Министерство образования Республики Беларусь Учреждение образования Белорусский государственный университет информатики и радиоэлектроники

УДК 621.396.969

Орабей Максим Сергеевич

Математическая модель обработки принятого сигнала при измерении параметров обнаруживаемых объектов

АВТОРЕФЕРАТ

на соискание степени магистра по специальности 1-39 80 01 «Радиосистемы и радиотехнологии»

Научный руководитель Гринкевич Антон Витальевич кандидат технических наук, доцент

ВВЕДЕНИЕ

Современное общество сталкивается с растущей необходимостью проведения точных и эффективных измерений параметров обнаруживаемых объектов в различных областях применения. Начиная от промышленной радиолокации и заканчивая медицинской диагностикой, требования к точности измерений постоянно возрастают. В этом контексте особую важность приобретает неразрушающий контроль (НК) — набор методов и технологий, позволяющих проводить измерения без изменения физических и химических свойств объекта.

Важность неразрушающего контроля обусловлена несколькими факторами. Прежде всего, он позволяет сохранить целостность и структуру объектов при их измерении, что имеет критическое значение в ряде областей. Например, в промышленности НК используется для обнаружения дефектов и оценки качества материалов, что позволяет предотвратить возможные аварии и повысить безопасность производства. В медицине методы НК играют ключевую роль в диагностике заболеваний, позволяя проводить анализ без необходимости хирургического вмешательства, что существенно снижает риск для пациентов.

В рамках данной магистерской диссертации осуществляется анализ методов НК и выявление наиболее перспективного, анализ областей применения НК, анализ радиолокационных устройств НК, а также сигналов, которые используются в радиолокационных устройствах НК.

Целью магистерской диссертации является разработка и исследование математический моделей зондирующего и принятого сигналов, полученных в процессе неразрушающего контроля, а также их обработка.

Основной задачей является разработка эффективных методов и алгоритмов обработки сигналов, которые позволят точно измерять параметры обнаруживаемых объектов на основе полученных данных.

Получение точной информации о параметрах объектов важно не только для обеспечения их качества и безопасности, но и для дальнейшего анализа и принятия решений. Результаты исследования, проводимого в рамках данной диссертации, будут иметь высокую практическую значимость и могут быть применены в различных областях, где важно сохранение целостности и структуры объектов при проведении измерений.

Таким образом, данная диссертация имеет высокую практическую значимость, поскольку результаты исследования могут быть применены в различных областях, где важно сохранение целостности и структуры объектов при проведении измерений, что способствует повышению качества и безопасности процессов контроля и диагностики.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

В рамках магистерской диссертации разработана математическая модель обработки принятого сигнала при измерении параметров обнаруживаемых объектов.

Тема работы относится к области радиосистем и радиотехнологий.

Основной целью работы является разработка математической модели обработки принятого сигнала при измерении параметров обнаруживаемых объектов. Для достижения этой цели ставятся следующие задачи:

- 1. Провести анализ методов неразрушающего контроля и радиолокационных устройств;
- 2. Разработать математическую модель обработки принятого сигнала при измерении параметров неразрушающего контроля;
- 3. Разработать математические модели формирования радиолокационного глубинного портрета.

Во введении описана актуальность темы диссертации и основные задачи работы.

В разделе 1 проведен анализ методов неразрушающего контроля, а также радиолокационных устройств и сигналов, используемых при неразрушающем контроле.

Раздел 2 посвящен математическому моделированию зондирующего принятого и просачивающегося сигналов.

В разделе 3 приведена математическая модель обработки принятого сигнала в целях формирования радиолокационного изображения

В заключении излагаются основные выводы по результатам работы в сопоставлении с общей целью и поставленными задачами.

Общий объем магистерской диссертации составляет 85 страниц. Библиографический список включает 33 наименования.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Данная магистерская диссертация посвящена разработке математической модели обработки принятого сигнала при измерении параметров обнаруживаемых объектов.

В разделе 1 проведен анализ методов неразрушающего контроля. Были рассмотрены следующие методы: акустический, магнитный, тепловой, электромагнитный, оптический, электрический, с использованием проникающих веществ, радиационный, радиоволновой. В результате установлено, что радиоволновой метод является наиболее перспективным. Также проведен анализ радиолокационных устройств и сигналов, используемых при неразрушающем контроле.

Во 2 разделе описаны математические модели сигналов, а именно: зондирующего принятого и просачивающегося сигналов. Также проведено математической моделирование и приведены результаты.

В разделе 3 приведена математическая модель обработки принятого сигнала в целях формирования радиолокационного изображения. Рассмотрена математическая модель формирования радиолокационного изображения классическим методом и методом максимального правдоподобия. Также проведен анализ методов путем оценки вероятности правильного обнаружения.

Таким образом, данная магистерская диссертация является важным шагом в развитии методов и систем неразрушающего контроля. Ожидается, что результаты исследования найдут широкое применение в индустрии и научных исследованиях, способствуя улучшению качества и безопасности продукции и конструкций.

ЗАКЛЮЧЕНИЕ

В целях моделирования принятого сигнала и его последующей обработки мной были рассмотрены классический метод и метод максимального правдоподобия.

В рамках работы решены следующие задачи:

- Проведен анализ методов неразрушающего контроля, анализ радиолокационных устройств и сигналов, применяемых при неразрушающем контроле. Выбор остановлен на радиолокационном методе неразрушающего контроля, использующего электромагнитные волны в качестве зондирующего сигнала, как наиболее перспективном.
- Разработаны математические модели зондирующего сигнала, принятого сигнала и просачивающегося сигнала в целях формирования радиолокационного изображения классический методом и методом максимального правдоподобия.
- Выполнено математическое моделирование и сравнительный анализ классического и адаптивных методов формирования радиолокационного изображения. В результате установлено, что адаптивный метод лучше справляются с обработкой принятого сигнала.

Научная новизна диссертации заключается в разработке математической модели принятого сигнала и его обработки путем формирования радиолокационного изображения классическим методом и методом максимального правдоподобия. Практическая ценность работы заключается в разработке математической модели принятого сигнала и анализе методов его обработки для формирования радиолокационного изображения. Из результатов следует, что адаптивный метод обладает лучшей разрешающей способностью.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

- 1. Гринкевич, А. В. Современные подходы к созданию систем обнаружения скрытых объектов / А. В. Гринкевич, М. С. Орабей, В. В. Иванец, П. С. Томашевская // Информационные радиосистемы и радиотехнологии : материалы науч.-техн. конф. (Республика Беларусь, Минск, 29–30 ноября 2022 года) / редкол. : В. А. Богуш [и др.]. Минск: БГУИР, 2022. С. 21–23.
- 2. Гринкевич, А. В. Анализ оценки эффективности предварительного обнаружения при адаптивной и неадаптивной обработке / А. В. Гринкевич, М. С. Орабей, В. В. Иванец // Информационные радиосистемы и радиотехнологии : материалы науч.-техн. конф. (Республика Беларусь, Минск, 23–24 апреля 2024 года) / редкол : В. А. Богуш [и др.]. Минск: БГУИР, 2024.
- 3. Гринкевич, А. В. Анализ методов сверхразрешения применительно к радиолокатору подповерхностного зондирования для обнаружения скрытых объектов / А. В. Гринкевич, М. С. Орабей, В. В. Иванец, А. А. Денис // Доклады БГУИР. 2024. Т. 22. №3