
60-я научная конференция аспирантов, магистрантов и студентов

СЕКЦИЯ «ЗАЩИТА ИНФОРМАЦИИ»
UDC 0 0 4 .056

SQL INJECTION ATTACKS AND PREVENTION

Deng Y.Y.. gr.36 7311 master student

Belarusian State University of Informatics and Radioelectronics,
Minsk, Republic o f Belarus

Vrublevsky LA. - PhD in Technical Sciences
Annotation. The paper discusses SQL injection, a common editing language used to inject malicious SQL commands into input forms or
queries in order to gain access to a database or manipulate its data. Corresponding precautions for each SQLI are considered.

Keywords. SQL language injection, attacks, query, prevention methods.

Introduction. A web application is a software system that provides an interface to its users
through a web browser on any operating system (OS). Despite their growing popularity, web
application security threats have become more diverse, resulting in more severe damage Malware
attacks, particularly SQLI attacks, are common in poorly designed web applications. This
vulnerability has been known for more than two decades and is still a source o f concern. This
highlights the need to develop effective methods to protect data from unauthorized access. In this
context, we need an effective self-detection method for prevention.

The main part. To grasp how SQL language can be abused, SQLI attackers and defenders
need to understand how it functions [1]. The queries must be prepared in the SQL language and
adhere to specified syntax to retrieve data from databases or modify the data, such as:

“SELECT * FROM authortable WHERE book name = ‘Advanced Database System s’”

The aforementioned search will provide all books with book name "Advanced Database
Systems." The queries are typically typed into a web browser and sent to the database management
system [3].

What if the attacker in this case extends the original SQL query?
For example:

“SELECT * FROM authortable WHERE book name = 'Advanced Database Systems’ OR
7 •= 7 -

The above query will return all book names in the database, not just the book names labeled
as "Advanced Database Systems," because the sentence ‘ 1=1’ is always tme. If the stored list of
book names is not a secret and the previous example might not pose a problem [4] If successful, it
might return sensitive data, such as passwords, bank accounts, trade secrets, and personal
information, which might be regarded as a privacy breach among other negative effects. However,
it could be applied to value using different syntax.

By using SQL injection, the attackers can alter the SQL statement by replacing user's
supplied data with their own data as shown in Figure 1. Thus, the attackers can have direct access to
a database server to retrieve confidential information. However, the impacts o f the SQL injection
attacks are far reaching and they vary depending on the database applications. Some o f these
impacts o f a successful SQL injection attacks include authentication bypass, information disclosure,
compromised data integrity, compromised availability o f data, and remote command execution.
Authentication bypass enables an attacker to access database application by using fake username
and password. Information disclosure allows an attacker to obtain sensitive data from the database.
Compromised data integrity assists an attacker to change some contents o f the data in the database.
Compromised availability data enables an attacker to delete some information from the database.

11

Remote command execution allows an attacker to affect the host operating system [3].

60-я научная конференция аспирантов, магистрантов и студентов

Information
Gathering

Database
Access

SQL Injection
4 —

ATTACKER WEB APPLICATION DATABASE SERVER1
------ U 1=3

^</>1 *
•blcld M

&(Bd(I ^
•b!dd

>!sk84*

... r
*ö -p a 8!»k84B 1

I_ r
A D M IN LOGIN

â
ATTACKER

HASH CRACK HASHED PASSWORD

Server Access

SERVER

Privilege
Escalation &___ i n

INFECTED SERVER

Figure 1. How SQL injection attacks work

Most common attacks on SQLI. As we know, SQL is a programming language that is used
to create, update, and access data in a database. A hacker can intentionally cause the application to
fail, delete data, steal data, or gain unauthorized access by carefully crafting SQL commands [5]. To
address the aforementioned issue, we provide a detailed overview o f the various types o f SQLI
attacks discovered to date. For each type o f attack, we provide explanations and examples o f how
such attacks can be carried out.

Tautology attack
The attacker attempts to use a conditional query argument to test always true in the tautology

attack, such as (1=1) or (—). The attacker injects the condition and transforms it into a tautology
that is always valid using the WHERE clause. This type o f attack is commonly used to access
databases without requiring authentication on websites [1].

Union query
In this category o f attack, the UNION operator is only used if both queries have the same

form, the attacker constructs a SELECT statement that is similar to the original query [5]. To do so,
it must be known that the correct table name, as well as the number o f columns and their data types
from the first query. As a result, two conditions may be satisfied, or an attack on the union query
will be launched, and each query returns the same number o f columns [6]. If the data type o f a
column is incompatible with string data, the injected query will fail.

Piggybacked query
The piggybacked query attack concatenates more query statements onto the initial query

[1]. This technique is especially risky since it enables an attacker to insert virtually any SQL
command. Data extraction, addition or modification o f data, denial o f service (DoS), and remote
command execution are all examples o f determined attacks [16]. In this type o f attack, an attacker
attempts to inject additional queries into the original query. Unlike other forms, attackers attempt to
add new and distinct queries that "piggyback" on the original query rather than changing it [3].

Illegal or incorrect query
This kind o f attacker takes advantage of a database query that was improperly executed [1]. It

will show database error messages, which frequently provide crucial facts that enable an attacker to
learn the application’s database specifics. The attack goal includes identifying injection parameters,

12

performing database fingerprinting, and extracting data. This attack assists an attacker in gathering
critical information concerning the nature and function o f the back-end database o f a web
application [8]. The attack is thought to be a practice run for future attacks aimed at gathering
information. This attack takes advantage o f the fact that the default error pages on application
servers are frequently excessively descriptive [7].

Stored procedure query
Here, an attacker can use this technique to modify the database’s stored procedures [1]. Both

authorized and unauthorized users will receive true or false results from the process. The users can
save their features and use them whenever they want. A collection o f SQL queries is provided with
the feature to use it. The intruder uses malicious SQL codes to execute the database’s built-in stored
procedures [8] This leads to cause the cached stored procedure query plans being recompiled. A
stored procedure's constraint is that it can only be used in the database.

Inference query
In this attack, the query is recast as an operation and executed based on the answer to a true or

false question about database data values [10]. For this method o f injection, attackers attempt to
break into a site that has been sufficiently protected that when an injection is successful and there is
no accessible feedback in the form of database error messages. Since database error messages are
not available to provide feedback and attackers must rely on another approach to get a response
from the database.

Existed prevention methods. This section provides an overview o f the existed approach and
explains the rationale for detecting SQL injection.

A. Any comment character is present
Having a single or multiple lines comment character in a statement generated from an

application is not a common practice by the programmers. The reason is that when a user executes
her/his query in the applications, she/he never includes a comment with it. On the other hand, the
attackers use this approach to include a comment character after their malicious command to let the
system neglect the rest of the query maintained by the application

В Number o f semicolons
The SQL statements are terminated with one semicolon at the end o f it. When an attacker

injects her/his malicious commands in the middle o f the statement, she/he places a semicolon and
then comments the rest of the statement, which result in having multiple semicolons. As we are
dealing with it as a string and not command, we can identify if multiple semicolons are present or

C. Presence o f always tm e conditions
Always true conditions rarely can be found in the benign SQL statements while they are the

most common terms used by attackers in their injection to make the condition always satisfied after
the OR operator. Researchers have considered this approach, however, they only have considered
the checking for num berl=num berl, variablel=variablel, and ‘string’= ’string’. In our approach, we
add the checking for number 1 !=number2, variable] !=variable2, and ‘s tr in g r!= ’string2’ so that it
will also always return a tm e value.

D. The number o f commands per statement
Regular queries generated by applications usually consist o f one request only such as

SELECT. When an attacker injects her/his code in the original SQL statement, it results in having
one statement with more than one requests.

E. Presence o f abnormal commands
When an application reads the input from a user and inserts it into a statement, it usually uses

SELECT, INSERT, or DELETE requests. Having statement coming from the application with
DROP, CREATE, COMMIT, ROLLBACK, GRANT, REVOKE, and DECLARE, requests may
indicate that a malicious action is happening.

F. Presence o f special keywords
Having a statement coming from an application, which is operated by a user requesting for the

version o f the SQL server, could indicate a malicious action. A set o f similar keywords are used to

60-я научная конференция аспирантов, магистрантов и студентов

13

60-я научная конференция аспирантов, магистрантов и студентов

be checked in the statement through the developed features identifier code. If any o f the keywords
is present, the program will detect it.

Conclusion. This paper involves SQLI statements and analyzes them based on their
principles to detect whether malicious commands are injected into the system and protect the
system from this type o f attack.

List of literature:
1. A comprehensive study on SQL injection attacks, their mode, detection and prevention / S. Dasmohapatra [et a t] / /

Proceedings o f Second Doctoral Symposium on Computational Intelligence: DoSCI 2021, Springer Singapore, 2022. -P . 617-632.
2. Static analysis approaches to detect SQL injection and cross-site scripting vulnerabilities in web applications: a survey / M.K

Gupta [et at.] / / Int Conf Recent Adv Innov Eng ICRAIE, 2014. -P . 9-13.
3. Open source web application security a static analysis approach / M, Alenezi. Y. Javed / / 2016 International Conference on

Engineering & MIS (ICEMIS) iEEE. 2016. -P . 1-5.
4 A review o f static code analysis methods for detecting security faws / B S Basutakara, P.N. Jeyanthi / / J Univ ShanghaiSci

Technol. 2021. -P. 47-53.
5. Dynamic multi-process information fow tracking for web application security / S. Nanda [et a l] / / Proceedings of the 2007

ACIWIFIP/USENIX international conference on Middleware companion, 2007. -P . 1-20.
6. Hybrid approach to detect SQLi attacks and evasion techniques / A. Makiou [et a l.} // 10th iEEE International Conference on

Collaborative Computing: Networking. Applications and Worksharing. IEEE, 2014 -P 452-456.
7 Analysis o f vulnerability detection tool for web services / A Murugan [et al.] / / Int J Eng Technol, 2018 -P . 3-8.
8 Design and implementation of SQL injection vulnerability scanning tool / P Techniques [et a l] / / Journal o f Physics:

Conference Series. IOP Publishing, 2020 -P. 1-6.
9. Vulnerability detection and prevention o f SQL injection / P.P Anaswara [et al.] / / International Journal of Engineering &

Technology, 2018 -P . 16-18.
10 Detection of SQL injection attacks a machine learning approach / M Hasan [et al.] H 2019 International Conference on

Electrical and Computing Technologies and Applications (ICECTA). IEEE, 2019. -P . 1-6.

14

