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In this article, the analysis of the general concepts both of the tensor and multidimensional-

matrix approaches in probabilistic modeling is performed and the relationships between the tensor 
and the multidimensional matrix are clarified. The matrix representation of the second order tensor 
definition known in the literature is generalized to the arbitrary order tensors. The theorems on the 
tensor nature of the covariance matrix and the multidimensional matrix of the arbitrary order 
moments of the random vector are proved. The theorem on the orthogonality of the transformation 
matrix of the arbitrary order multidimensional-matrix moment of the random vector provided the 
orthogonality of the random vector transformation is proved. 
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Выполняется анализ основных понятий тензорного и многомерно-матричного подходов 

в многомерном вероятностном моделировании, и детально выясняются взаимосвязи между 
тензорами и многомерными матрицами. Известное в литературе матричное представление 
определения тензора второго порядка обобщается на тензоры произвольного порядка. 
Доказаны теоремы о тензорной природе ковариационной матрицы и многомерной матрицы 
моментов произвольного порядка случайного вектора, об ортогональности многомерной 
матрицы преобразования многомерно-матричного момента произвольного порядка 
случайного вектора при ортогональном преобразовании случайного вектора. 

 
Ключевые слова: многомерное вероятностное моделирование; линейное векторное 

пространство; тензор; многомерная матрица; многомерно-матричное представление тензора; 
многомерно-матричные вероятностные моменты. 

 
 

Introduction 
The distinct non-classical approaches are used today in multidimensional 

probabilistic modeling, such as matrix and multidimensional-matrix and, to a lesser 
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extent, tensor and multiway approaches. In this article, the quite minor analysis of the 
multidimensional-matrix and tensor approaches is performed in order to reasonably 
compare their capabilities in multidimensional probabilistic modeling.  

The matrix and tensor approaches are based on two independent areas of 
knowledge: the tensor analysis [1–8] and the matrix analysis [8–12]. The tensor 
analysis is developed for the tensors of the arbitrary order. The matrix analysis is 
limited to the two-dimensional matrices. The situation in the generalization of the 
two-dimensional matrices to the multidimensional case is as follows: on the one 
hand, the very well fundamentals of the theory of the multidimensional matrices there 
exist [13–15], on the other hand, the searches for other approaches to its development 
are known. These approaches assume the continuation of the development to the 
mathematical completion, in some cases [16–19], or lead the theory of the 
multidimensional matrix into the tensor analysis, in other cases [20–21]. 

The notions of a tensor and a matrix are clearly distinguished [8, 9]. It would be 
a confusion of concepts to identify a matrix with a tensor [6]. However, the situation 
is somewhat different in the literature related to the data analysis. Sometimes, the 
notion tensor is attracted to the multidimensional data analysis [20, 21]. So, in [20] it 
is noted that the multidimensional matrices and tensors are convenient mathematical 
tool for such an analysis, and a tensor is used instead of a multidimensional matrix. 
We will call this approach as the tensor approach. The tensor approach is reduced to 
accepting a tensor as a multidimensional matrix without taking into account the 
definition and properties of a tensor. We find in [21] that tensors are 
multidimensional generalizations of matrices. The illegality of such an approach is 
noted shortly in [15]. We want to emphasize by this article that the generalization of 
the matrix to the multidimensional case should be performed in the matrix analysis 
but not in the tensor analysis. The two-dimensional (usual) matrix should be the 
natural particular case of the multidimensional matrix. We shell consider the some 
questions of the tensor theory and multidimensional matrix theory and state the 
relationships between tensors and multidimensional matrices to achieve our goal. 

 
1. Transformations of the coordinate systems 

Tensor is an object in the linear finite-dimensional space. Linear n -dimensional 
space is defined by a set of n  linearly independent elements (vectors) neee ,...,, 22 . 
This set is called the basis ie , ni ,...,2,1= , of the n -dimensional space. Each point x  
in the n -dimensional space is represented in the following form: 
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=+++=
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n exexexexx
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1 ... ,                               (1) 

 
where nxxx ,...,, 21  are real numbers which are called the coordinates of the point x . 
We will call x  as the position vector of the point or simply vector x . The expression 
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(1) is called the expansion of the vector x  by the basis ie . We will use the term 
“coordinate system ix  with the basis ie ” or simple “coordinate system ix ” along 
with the term basis ie . 

In tensor analysis, the so called Einstein summation convention is used: if an 
index is repeated in some term of the expression then the term must be summed with 
respect to that index for all admissible values of the index. For example, i

iex  is 

written instead of ∑
=

n

i
i

iex
1

, and i
i
jj exb =  means the equality ∑

=
=

n

i
i

i
jj exb

1
. 

The tensor definition is inextricably connected with the transformation of the 
basis (coordinate system). Let ix  be the initial coordinate system with the initial basis 

ie  and ix∗  be the new coordinate system with the new basis ie∗ . The reciprocal bases 
are introduced along with the initial bases: ie  (with the coordinate system ix ) is the 
reciprocal to the initial basis ie  and ie∗  (with the coordinate system ix∗ ) is the 
reciprocal to the new basis ie∗ . We will call the basis ie  reciprocal to the initial basis 

ie  as the initial reciprocal basis ie  and the basis ie∗  reciprocal to the new basis ie∗  as 
the new reciprocal basis ie∗ . The reciprocal bases are the bases which are orthogonal 
to their caused bases, i.e. the following equalities hold 
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where ),( j

i ee , ),( j
i ee ∗
∗  are the dot products of the vectors and j

iδ , j
i
∗

∗δ  is the 
Kronecker delta. 

The notations of the bases and vector coordinates are given in the table. 
 

Table 
The notations of the bases and vector coordinates 

 Initial basis,  
coordinates 

New basis,  
coordinates 

 
ie , 

ix  – contravariant  
coordinates 

ie∗ ,  
ix∗  

Reciprocal basis,  ie ,  ie∗ ,  
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coordinates ix – covariant  
coordinates 

ix∗  

 
The position vector of the point with respect to two bases is given by the 

expression 
 

j
j

i
i xexex == ∗
∗ .                                                (4) 

 
We find from (4) that  
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The equality (5) defines the transformation of the initial coordinate system ix  to 
the new coordinate system ix∗  as determined by the bases ie , and ie∗ . We find the 
expression (5) by taking the dot product of both sides of (4) with the new reciprocal 
basis ie∗  and taking into account the equality (3): ))(,())(,( j
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We also find from the equality j
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∗=  that  
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where  
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The equality (7) defines the transformation of the new coordinate system ix∗  to 
the initial coordinate system ix . We find the expression (7) by taking the dot product 
of both sides of the equality j

j
i

i xexe ∗
∗=  with initial reciprocal basis ie  and taking 

into account the equality (2): ))(,())(,( j
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It is clear that the transformations ),( j
i

j
i ee∗∗ =α  (6) and ),( j

i
j

i ee ∗∗ =α  (8) 
are mutually inverse. 

The expressions (5), (6), (7), (8) can be represented in the vector-matrix form. If 
one introduces the row-vectors ),...,,( 21 nT xxxX = , ),...,,( 21 nT xxxX ∗∗∗∗ =  and 
the matrix )()( , j

i
ji

∗∗∗ α=λ=Λ  with elements ),( j
i

j
i ee∗∗ =α  (6), then one gets 

instead of (5) 
 

XX ∗∗ Λ= ,                                              (9) 
 

where 
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ji ee∗∗∗∗ =α=λ=Λ .                        (10) 
 

If one introduces the matrix )()( ,, j
i

ji ∗∗∗ α=λ=Λ  with elements 

),( j
i

j
i ee ∗∗ =α  (8) then one gets instead of (7) 
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It is clear that ∗
−∗ Λ=Λ 1)( , ∗−

∗ Λ=Λ 1 , i.e. 
 

I=ΛΛ=ΛΛ ∗
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∗ .                                        (12) 
 

The property (12) in element form looks like this 
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It is clear, that if )( j
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i
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j
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2. Transformations of the bases 
The following transformation of the initial reciprocal basis je  to the new 

reciprocal basis ie∗  follows from (6):  
 

j
j

ii ee ∗∗ α= .                                                (13) 
 

We get the expression (13) by multiplying the both sides of (6) by je  and taking into 
account the equality (2): j

j
ij

j
i eeee ),( ∗∗ =α , ij

j
i ee ∗∗ =α . 

The following transformation of the new basis ie∗  to initial basis ie  follows 
from the equality ),( j

i
j

i ee ∗∗ =α : 
 

j
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∗α= .                                                (14) 
 

We get the expression (14) by multiplying the both sides of the equality 
),( j

i
j

i ee ∗∗ =α  by je∗  and taking into account the property (3): 

j
j

ij
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∗

∗
∗ =α ),( , ij

j
i ee =α ∗
∗ . 

We write also the following transformations as the inverse to the 
transformations (13), (14) respectively: the transformation of the new reciprocal basis 

ie∗  to the initial reciprocal basis je : 
 

j
j

ii ee ∗
∗α= , 

 
and the transformation of the initial basis ie  to the new basis ie∗ : 

 

j
j

ii ee ∗∗ α= .                                                (15) 
 
3. Transformations of the vectors. Covariant and contravariant components 

 
Any vector a  in n -dimensional space can be represented by different 

expansion, for instance, by the initial reciprocal basis ie  and by the new reciprocal 
basis ie∗ , 

 
i

i
j

j aeaea ∗
∗== ,                                       (16) 

 
or by the initial basis ie  and by the new basis ie∗  
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i
i

j
j aeaea ∗

∗== .                                      (17) 
 

The components ia  of the vector a  in the initial reciprocal basis ie  are called the 
covariant components of the vector a , and the components ia  of the vector a  in the 
initial basis ie  are called the contravariant components of the vector a . 

If we take the dot product of ie∗  with both sides of (16) noting that 
j

i
j

i ee ∗
∗

∗
∗ δ=),( , we find the transformation of the initial reciprocal components ia  

to the new reciprocal components ie∗ , i.e. the transformation of the covariant 
components: 

 

j
j
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ii aaeea ∗∗∗ α== ),( .                             (18) 
 

The relationship (18) has the same form as the relationship (15) of the initial basis ie  
to the new basis ie∗ . Thus, the initial reciprocal components ia  transform to the new 
reciprocal components ia∗  in the same fashion as the initial basis vectors ie  
transform to the new basis vectors ie∗ , and for this reason they are called covariant 
components [5].  

Similarly by taking the dot product of both sides of (17) with ie∗ , we get the 
transformation of the initial components ia  to the new components ia∗ , i.e. the 
transformation of the contravariant components: 

 
j

j
ij

j
ii aaeea ∗∗∗ α== ),( .                            (19) 

 
The transformation (19) has the same form as the transformation (13) of the 

initial reciprocal basis je  to the new reciprocal basis ie∗ . Thus, the initial 
components ia  transform to the new components ia∗  in the opposite fashion  as the 
initial basis vectors ie  transform to the new basis vectors ie∗ . Accordingly, the 
components ia  are called contravariant components of the vector. 

 
4. The case of the orthogonal bases 

If the initial basis ie  is orthogonal, then the initial reciprocal basis ie  is the same 
as the ie  [5], i.e. i

i ee = . If the new basis ie∗  is orthogonal too, then the new 
reciprocal basis ie∗  is the same as the ie∗ , i.e. i

i ee ∗
∗ = . In this case, the elements of 

the transition from the new coordinate system ix∗  to the initial coordinate system ix  
satisfy the equalities (see (8))  
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),(),(),(),( jij
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i eeeeeeee ∗∗
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and the elements of the transition from the initial coordinate system ix  to the new 
coordinate system ix∗  satisfy the equalities (see (6))  
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Note that the elements j

i
∗α  (20) and j

i∗α  (21) represent the matrices ∗Λ  (11) 
and ∗Λ  (10) respectively. Comparing the expressions (20), (21) shows that T

∗
∗ Λ=Λ . 

Since I=ΛΛ ∗
∗  then IT =ΛΛ ∗∗  and 1−

∗∗ Λ=ΛT . This means that the matrices ∗Λ  and 

∗Λ  are orthogonal. The orthogonality property of the matrix ∗Λ  in tensor notation 
looks like this: 
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5. Definition of a tensor 

Definition of a tensor [5]. A tensor a  of the order srp +=  of the type ),( sr  ( r  
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in which j

i∗α  are elements of the transition from the initial basis ie  to the new basis 

ie∗ , and k
l∗α  are the elements of the inverse transition from the initial reciprocal 

basis je  to the new reciprocal basis ie∗ . 
Note that the components s

r

kk
jja ,...,

,...,
1

1
 of a tensor are the functions of the coordinates 

of the coordinate system in which they are considered. If a tensor is considered in the 
initial coordinate system ix  then its components are the functions of the variables ix : 
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system ix∗  are the functions of the variables ix∗ : 
),...,,( 2,...,

,...,
,...,
,...,

1

1

1

1

nill
ii

ll
ii xxxaa s

r

s

r

∗∗∗∗∗
∗∗

∗∗
∗∗ = . The definition (23) means that the equalities 

(23) hold for all values of the variables nxxx ,...,, 21  provided the coordinate system 
transformation.  

If we suppose in the definition (23) 0=s  then we receive the following 
definition of the covariant tensor of the order r :  

 

r
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Supposing in the definition (23) 0=r  give the following definition of the 
contravariant tensor of the order s : 
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The separate definition is applied for the order zero tensor [7]. 
Definition of a tensor of the order zero. A tensor a  of the order zero (a scalar) is 

the geometrical object which is defined in the initial coordinate system ix  by the 
scalar function ),...,,( 21 nxxxa  and in the new coordinate system ix∗  by the scalar 
function ),...,,( 21 nxxxa ∗∗∗  connected with the function ),...,,( 21 nxxxa  by the 
equality aa =  for each point of the space.  

Definition of the outer product of the tensors. The outer product of two tensors 
r
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1 ′′  is the tensor which defined by the following expression: 
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Definition of the inner product of the tensors. The inner product of two tensors 

is a contraction of the outer product with respect to two indices, each belonging to a 
component of the tensors. 

Example 1. The simple example of the tensor of the order zero is the Euclidean 
distance in the Euclidean space with the orthogonal initial basis ie  and the orthogonal 
new basis ie∗ . Indeed, let ),...,,( 21 nxxx  and ),...,,( 21 nxxx ′′′  be two points in 
pointed space. Euclidean distance between these two points is defined by the formula 
(in tensor notation) 

 
))((2 iiii

x xxxxd ′−′−= . 
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The new coordinates ix∗  of the points in the new basis ie∗  are defined as follows (see 
(5)): 

 
j

j
ii xx ∗∗ α= , j

j
ii xx ′α=′ ∗∗ . 

 
Therefore, we receive in the new coordinate system 
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We have the equality 22
xx dd =∗ , so the Euclidean distance between two points is the 

tensor of the order zero in accordance with the definition of a tensor of the order zero. 
Example 2. The vector is the tensor of the order one. Indeed, the transformation 

(18) of the covariant components of a vector is the definition (24) provided 1=r . 
Example 3. The simple example of the tensor of the order two is the outer 

product of the two vectors. Let ),...,( 1 naa  and ),...,( 1 nbb  be two vectors in the initial 
coordinate system ix  (with the basis ie ). The quantities jiji baa =,  are the elements 
of the so called outer product of these vectors. The new components of the vectors in 
the new basis ie∗  are defined by the formulae k

k
ii aa ∗∗ α= , l

l
jj bb ∗∗ α= . Then we 

have the following string: 
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This expression is the definition (25) of the contravariant tensor of the order 2=s . 
 

6. Multidimensional matrices 
Definition of a multidimensional matrix. A multidimensional ( p -dimensional) 

matrix is a system of numbers or variables 
piiia ,...,, 21
, αα = ni ,...,2,1 , p,...,2,1=α , 

located at the points of the p -dimensional space defined by the coordinates 
piii ,...,, 21 .  

The p -dimensional matrix is denoted as 
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)( ,...,, 21 piiiaA = , αα = ni ,...,2,1 , p,...,2,1=α ,                        (26) 
 

or )( iaA = , where ),...,,( 21 piiii =  is a multi-index, αα = ni ,...,2,1 , p,...,2,1=α . 
If nnnn p === ...21 , then the matrix (26) is called a p -dimensional matrix of 

the order n  (a hyper-square matrix). In this connection, the matrix (26) with distinct 
pnnn ,..., 21  could be called a hyper-rectangular matrix. 

Thus, a zero-dimensional matrix is a scalar, a one-dimensional matrix is a vector 
and a two-dimensional matrix is an ordinary matrix in traditional notation. 

Any p -dimensional matrix )( ,...,, 21 piiiaA =  can be represented in the form 
)( ,, cslaA = , where ),...,,( 21 κ= llll , ),...,,( 21 λ= ssss , ),...,( 1 µ= ccc  are multi-

indexes, p=µ+λ+κ . We will say that the matrix A  has ),,( µλκ -structure and 
denote it ),,( µλκA . 

Transpose of a multidimensional matrix. The matrix )( ,...,, 21

T
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T
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matrix A . For example, let 
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Note, that the Matlab function ipermute.m performs a transpose of a 

multidimensional array in accordance with the definition (27). 
The some standard substitutions are introduced in the work [15] which allow us 

to form various substitutions. They are substitutions of the types ‘onward’, ‘back’, 
‘onward-back’.  

The substitution on the p  indices the lower string of which is formed from the 
upper string by the transfer of the r  left indices to the right (onward) is called 
substitution of the type ‘onward’ and is denoted rpB ,  or simple rB :  
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The substitution on the p  indices the lower string of which is formed from the 

upper string by the transfer of the r  right indices to the left (back) is called 
substitution of the type ‘back’ and is denoted rpH ,  or simple rH : 
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The substitution on the p  indices the lower string of which is form from the 

upper string by the transfer of the r  left indices to the right (onward) and the s  right 
indices to the left (back) is called substitution of the type ‘onward-back’ and is 
denoted sr HB : 
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Multiplication of two multidimensional matrices. If a p -dimensional matrix A  

is represented in the form of )()( ,,,...,, 21 csliii aaA
p
== , where ),...,,( 21 κ= llll , 

),...,,( 21 λ= ssss , ),...,( 1 µ= ccc  are multi-indices, p=µ+λ+κ , and a q -
dimensional matrix B  is represented in the form of )()( ,,,...,, 21 mscjjj bbB

q
== , where 

),...,( 1 ν= mmm  is a multi-index, q=ν+µ+λ , then the matrix )( ,, msldD =  is called 
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a ),( µλ -folded product of the matrices A  and B , if its elements are defined by the 
expression 

 
∑∑ ∑∑

µ

==
1 2

,,,,,,,,,,
c c c

msccsl
c

msccslmsl babad  . 

 
The ),( µλ -folded product of the matrices A  and B  is denoted )(, ABµλ . Thus, 

 
)()()( ,,,,,,

,
msl

c
msccsl dbaABD === ∑µλ . 

 
In the case of the )0,0( -folded product we often omit the left upper indices and 

write AB  instead of )(0,0 AB . 
In the general case )()( ,, BAAB µλµλ ≠ . 
The associative law of multiplication of the multidimensional matrices holds: 

 
))(())(( ,,,, BCACAB µ′λ′µλµλµ′λ′ = . 

 
The distributive law of multiplication of the multidimensional matrices is as 

follows: 
 

)()())(( ,,, CAABCBA µλµλµλ +=+ . 
 

Degree of multidimensional matrix. The matrix 2,, )( AAAD µλµλ ==  is called a 
),( µλ -folded square of the matrix A , and the matrix 

kAAAAAD µλµλµλµλ == ,,,, )))(((   is called a ),( µλ -folded k -th degree of the matrix 
A . If it is )0,0( -folded k -th degree of the matrix A , then we omit the left upper 
indices and write kA  instead of kA0,0 . 

Identity multidimensional matrix. The matrix ),( µλE  is called a ),( µλ -identity 
matrix if the equalities 

 
AAEAE =µλ=µλ µλµλ )),(()),(( ,,  

 
are satisfied for any multidimensional matrix A . The matrix ),( µλE  is )2( µ+λ -
dimensional matrix whose elements are defined by the formula 
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≠
=

==µλ
mcif
mcif

eE msc ,0
,,1

)(),( ,, , 

),...,( 1 µ= ccc , ),...,( 1 λ= sss , ),...,( 1 µ= mmm .            (29) 
 
 

7. Multidimensional-matrix representation of tensor 
It follows from (25) that the definition of the contravariant second order tensor 

has the form 
 

21
2

2
1

121 ,, jj
j

i
j

iii aa ∗∗∗∗ αα= .                          (30) 
 

It is convenient to express a second order tensor in form of a matrix [3]. It allows 
using the matrix notation in the operations with tensors. Introducing the matrix 

)()( , j
i

ji
∗∗∗ α=λ=Λ  (10) and the matrices of the second order tensors )( 21, jjaa = , 

)( 21, iiaa ∗∗=  allows us to obtain the following form of the representation of the 
definition of the second order tensor (30) [3]: 

 
Taa ∗∗ ΛΛ= .                                               (31) 

 
Indeed, we have the following transformations: 

 
∑∑∑ ∗

∗
∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗∗ λλ=λλ=λλ=
21

22
21

11
21

22
21

11
21

21
2211

21

,
,

,
,

,
,

,
,

,

,
,,

,

jj

T
ij

jj
ji

jj
ji

jj
ji

jj

jj
jiji

ii aaaa  

 
The last expression has the matrix form (31). Since 1−

∗
∗ Λ=Λ , then the inverse 

to the (31) transformation has the following matrix form: 
 

Taa ∗∗ ΛΛ= ,                                              (32) 
 

where ∗Λ  is the matrix )()( ,, j
i

ji ∗∗∗ α=λ=Λ  (11). 
The matrix representation is more convenient for the visual perception and 

computer calculations since the matrix algebra is very good represented in all 
programming systems.  

It is noted in [3] that the matrix notation fails for tensors of higher order. 
However, this statement is refuted below. We give below the generalization of the 
expression (32) for the arbitrary order tensor in the framework of the theory of the 
multidimensional matrices. Let us turn for this to the tensor definition (25) in the case 
of the arbitrary bases ie , ie∗  and introduce apart the two-dimensional matrix 
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)()( , j
i

ji
∗∗∗ α=λ=Λ  (10) also the s -dimensional matrices )( ,...,1 skkaa = , 

)( ,...,1 sllaa ∗∗=  of tensors. Then we can write the definition (25) in compliance with 
the summation convention in terms of these matrices: 

 
s

ss
s kk

klkl
ll aa ,...,

,,
,..., 1

11
1 ∗

∗
∗
∗

∗∗ λλ=  . 
 

If we use the summation sign then the last expression takes the following form: 
 

=λλ= ∑ ∑
= =

∗
∗

∗
∗

∗∗ n

k

n

k

kk
klkl

ll

s

s
ss

s aa
1 1

,...,
,,

,...,

1

1
11

1   

∑ ∑
= =

∗∗∗=
n

k

n

k

kk
klklkl

s

s
ss
az

1 1

,...,
,...,,,,

1

1
2211

 ,                            (33) 

where we introduce the s2 -dimensional matrix 
 

)()( ,,,...,,,, 112211

∗
∗

∗
∗∗∗∗ λλ==

ssss klklklklklzz  .                            (34) 
 

The matrix z  (34) is the )0,0( -folded s -th degree of the matrix )( ,
∗∗ λ=Λ ji : 

sz )(0,0 ∗Λ= . On the other hand, we can write the following equation along with the 
equation (33) by introducing the matrix )( ,...,,,..., 11 ss kkll ∗∗λ=Λ : 

 

∑ ∑
= =

∗∗
∗∗ λ=

n

k

n

k

kk
kkll

ll

s

s
ss

s aa
1 1

,...,
,...,,,...,

,...,

1

1
11

1  .                         (35) 

 
If  

 
ssss kkllklklklz ,...,,,...,,...,,,, 112211 ∗∗λ=                                   (36) 

 
then the expressions (33), (35) are equivalent. Taking into account (34), we will have 
instead of (36): 

 
∗
∗

∗
∗∗∗ λλ=λ

ssss klklkkll ,,,...,,,..., 1111
 .                                (37) 

 
The equality (36) means, that the matrices z  and Λ  are connected by transpose 
operation, namely 

 
sTz 2Λ= ,                                                 (38) 
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where 







=

ss

ss
s kkklll

klklkl
T

...,,,...,,
,,...,,,,

2121

2211
2  is the transpose substitution on the s2  indexes, 

in which we use the index l  instead of the index l∗ . In rank form this substitution is 
defined by following expression: 

 









−−

−++
=

12,32...,,3,1,2,...,6,4,2
2,12,...,2,1,,...,3,2,1

2 sss
sssss

T s .                      (39) 

 
It is follows from (38) that 

 
1

2
1

2 ))((
−− ∗Λ==Λ ss TsTz ,                                 (40) 

 
where 1

2
−
sT  is substitution inverse to the substitution sT2 . 

Thus, we received the following form for representation the tensor definition 
(25):  

 

( )aaa sTsss 1
2))(()(

,0,0 −∗Λ=Λ= ,                            (41) 
 

where Λ  is the matrix (40), z  is defined by the formula (34), )( ,
∗∗ λ=Λ ji  is the 

matrix (10), sT2  is the transpose substitution (39), )(,0 as Λ  is the ),0( s -folded 
product of the matrices Λ  and a  [15]. 

The known expression (32) is the particular case of the expression (41) provided 
2=s . We can write the following expression instead of (32): 

 
)))(((

1
422,0 aa T −∗Λ= , 

 

where 







=

3,1,4,2
4,3,2,1

4T , 







=−

2,4,1,3
4,3,2,11

4T . 

 
8. Probabilistic applications 

Let us prove the theorems related to the probabilistic applications. 
The linear transformation of the random vector which reduces its covariance 

matrix to the diagonal form is considered in the principal components method [22]. 
The following theorem applies to such a transformation. 
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Theorem 1. The elements jiR ,,ξ  of the covariance matrix )( ,, jiRR ξξ =  of the 

random vector ),...,( 1 nT ξξ=ξ  can be considered as the components of the second 
order tensor. 

Proof. The covariance matrix of the random vector ),...,( 1 nT ξξ=ξ  is defined in 
the initial basis ie  by the expression )( TER ξξ=ξ

 , where ξ  is the centered random 
vector, and E  means the mathematical expectation. If we introduce the linear 
transformation ξΛ=η ∗   (9) with the transformation matrix ∗Λ  (10), then we get for 
the covariance matrix of the random vector η: 

 
( ) ( ) TTTTT REEER ∗

ξ
∗∗∗∗∗

η ΛΛ=ΛξξΛ=ξΛξΛ=ηη=  )()( . 
 

We can see that the covariance matrix is transformed in accordance with the 
transformation (31) of the second order tensor. Thus, the elements jiR ,,ξ  of the 

covariance matrix )( ,, jiRR ξξ =  of the random vector ),...,( 1 nT ξξ=ξ  can be 
considered as the components of the second order tensor. 

The following theorem is more general then theorem 1. 
Theorem 2. If )( kξ=ξ , nk ,...,2,1= , is the random vector in the n -dimensional 

Euclidean space with the initial basis ie , and )()( ,...,0,0 1 skk
s

s
s E ν=ξ=ν  is the s -th 

order multidimensional-matrix initial moment of the vector ξ  [15] ( s -dimensional 
matrix), then the elements skk

s
,...,1ν  of the matrix sν  can be considered as the 

components of the s -th order tensor. 
Proof. Let )( l∗η=η , nl ,...,2,1= , be the random vector ξ  in the new basis ie∗ , 

)()( , j
i

ji
∗∗∗ α=λ=Λ  be the transformation matrix from initial basis ie  to the new 

basis ie∗ , )( 0,0 r
r E η=ν  be the initial moment of the order s  of the vector )( l∗η=η  

in the new basis ie∗ . Since k
k

lk
kl

l ξα=ξλ=η ∗∗
∗

∗
, , then  

 

=

















ξλξλξλ=ν=η=ν ∑ ∑
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k
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1
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E
1 1

,,,
1
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2211

  

 

=







ξξξλλλ= ∑ ∑
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,,,

1

21
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)()))((( ,0,0

1 1

,...,
,,,

1
2

1

1
2211 s

s
s

Tssn

k

n

k

kk
sklklkl

s

s

s
ss

νΛ=νΛ=







νλλλ=

−∗

= =
∗∗∗∑ ∑  .(42) 

 
We can see that the equality (41) holds. Theorem 2 is proved. 

The following theorem defines the structure of the transformation matrix Λ  of 
the s -th order initial moment sν  in (42) provided the orthogonal transformation of 
the random vector. 

Theorem 3. If the transition matrix )()( , j
i

ji
∗∗∗ α=λ=Λ  (10) from the initial 

coordinate system ix  to the new coordinate system ix∗  is orthogonal, then the s2 -
dimensional matrix Λ  in tensor definition (41) and in the s -th order initial moment 

sν  transformation (42) is orthogonal too.  
Proof. Orthogonality of the matrix )()( , j

i
ji

∗∗∗ α=λ=Λ  (10) means that  
 

ji
n

k
jkik

n

k
kjki ,

1
,,

1
,, δ=λλ=λλ ∑∑

=

∗∗

=

∗∗ , 

 
where ji,δ  is Kronecker delta, or in matrix form 

 
ITT =ΛΛ=ΛΛ ∗∗∗∗ )()( , 

 
where I  is identical matrix of the order n . The s2 -dimensionality matrix 

),0,( ssΛ=Λ  is called ),0,( ss -orthogonal if the following equality holds [22]: 
 

),0()()( ,0,0 sEV ss =ΛΛ=ΛΛ= ΠΠ , 
 

where ssB ,2=Π  is the transpose substitution at the s2  indices of the type ‘onward’ 
(28) and ),0( sE  is the ),0( s -identical matrix (29) [15].  

Let us rewrite (37) using other indices: 
 

)()(
2221122121 ,,,,..,,,,...,,

∗∗∗ λλλ=λ=Λ
++++ ssssssss jjjjjjjjjjjj  . 

 
Then 

 
=λ=λ=Λ

++++
ΠΠ )()( ,...,,,,..,,,..,,.,,...,,

2122122121 ssssssss jjjjjjjjjjjj  

)( ,,, 22211

∗∗∗ λλλ=
++ ssss jjjjjj  . 
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Further, 

 

=







λλ=ΛΛ= ∑ ∑

= =

ΠΠ

+
++++++

n

k

n

k
jjjkkkkkkjjj

s

s s
ssssssssss

V
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,...,,,,..,,,..,,,,...,,
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1 2
22122122121
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++ ssss jjjjjjv

22121 ,..,,,,...,,  
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+
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k
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s s
ssssssssss

1 1
,,,,,,

1 2
22221122211
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= =

∗∗∗∗∗∗

+
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n

k

n

k
kjkjkjkjkjkj

s s
ssssssssss

1 1
,,,,,,

1 2
22222221111

)())((   

 

( ) =










 ===

=δδδ= ++
++ .otherwhise0

,,...,,if,1
)())(( 22211

,,, 22211

ssss
jjjjjj

jjjjjj
ssss

  

),0( sE= . 
 

The proof is completed. 
 

9. Relationship between a tensor and a multidimensional matrix 
Let us list the signs characterizing the relationship between a tensor and a 

multidimensional matrix. 
1. A tensor is not a matrix; a tensor is a set of scalars represented by an 

indexed variable. The work with tensors in the framework of the tensor analysis is the 
work with indexed variables, i.e. with scalars but not with matrix or 
multidimensional-matrix variables. A tensor (covariant for simplicity) is denoted 

riia ,...,1
, while a multidimensional matrix is denoted )( ,...,1 riiaa =  and is considered as 

a “hypercomplex number” [9].  
2. All of tensor indices are written out in tensor notation explicitly. The 

tracking of the indices in tensor expressions is difficult with a large number of 
indices. “The writing out of the indices leads to cumbersome formulae with tensor 
notation” [20]. 

3. All of tensor indices run the values n,...,2,1 , where n  is the 
dimensionality of the space in which the tensor is defined, while the indices of a 
multidimensional matrix can run the arbitrary number of values. This means that a 
tensor can be represented only by the hyper-square matrix, and it is impossible to 
receive a hyper-rectangular matrix provided declaring a tensor as a matrix.  
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4. A tensor is the set of functions defined in the linear vector space nL . Its 
component )...,,( 21

,...,1

n
jj xxxa
r
∗∗  in the coordinate system ix  with the basis ie  

provided the fixed values of the indices ∗∗
rjj ,...,1  is the some characteristic of the 

mutual connections of the components with numbers ∗∗
rjj ,...,1  of the vector 

nn Lxxx ∈)...,,( 21 . A multidimensional matrix is not connected with a specific space. 
A multidimensional matrix can be a number matrix (constant) or a function of other 
multidimensional matrix, and it is impossible to assert in general case that the 
element ∗∗

rjja ,...,1
 of the matrix )( ,...,1 rjjaa =  is a characteristic of some mutual 

connections between the components with the numbers ∗∗
rjj ,...,1 .  

5. The operations of the outer and inner product of the tensors do not allow 
realization of the ),( µλ -folded product of the multidimensional matrices provided 

0≠λ .  
6. It is not possible to represent a mixed (covariant and contravariant) 

tensor with a multidimensional matrix, since no way of ordering covariant and 
contravariant indices has been established. 

7. The multidimensional-matrix notation can be used in tensor analysis, 
what was shown by representation of the definition of a covariant tensor in 
multidimensional-matrix notation.  

8. Any mathematical object should develop in the framework of his theory: 
tensor in the framework of tensors, matrix in the framework of matrices. A 
multidimensional matrix should generalize the usual (two-dimensional) matrix 
inheriting or generalizing the methods of the theory of usual matrices. A tensor as a 
multidimensional matrix is not such a generalization. Tensor as multidimensional 
matrix transfers the matrix into the framework of the other theory. The use of the 
term tensor without taking into account its properties seems unacceptable. 

 
Conclusion 

So, the article analyzes two approaches used in the multidimensional 
probabilistic modeling: multidimensional-matrix and tensor approaches. As the 
result, the differences and interconnections of these approaches are revealed. In 
particular, the multidimensional-matrix interpretation (multidimensional-matrix 
representation) of the arbitrary order tensor, which is absent in the literature, is 
obtained. This opens the way for generalization of tensor concepts to the 
multidimensional-matrix spaces. The number of theorems establishing the 
connections between the multidimensional probabilistic concepts and tensors are 
proved. At the same time, the performed analysis shows the illegality of the formal 
using a tensor as a multidimensional matrix. 
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