СВЯЗНОСТИ НА ЧЕТЫРЕХМЕРНЫХ ПОЧТИ СИМПЛЕКТИЧЕСКИХ ПРОСТРАНСТВАХ

Н.П. Можей

Белорусский государственный университет информатики и радиоэлектроники, П. Бровки 6, 220013, Минск, Беларусь, mozheynatalya@mail.ru

Если на гладком четномерном многообразии задана невырожденная 2-форма, то такая форма называется почти симплектической структурой, а многообразие в этом случае называется почти симплектическим, для замкнутой формы многообразие, соответственно, называют симплектическим. Симплектические структуры играют важную роль в таких областях физики, как классическая механика, геометрическая оптика, термодинамика и др. Предположение о невырожденности тензора структуры связано с уравнениями У.Р. Гамильтона, симплектическая геометрия упрощает формальный аппарат гамильтоновой динамики и вариационного исчисления. Широко известны приложения симплектической геометрии в небесной механике и динамике твердого тела, где фазовые пространства интегрируемых гамильтоновых систем являются симплектическими многообразиями (см., например, [1]). Случай почти симплектических структур также содержателен и интересен во многих отношениях, в частности, при описании гамильтоновых векторных полей на почти симплектических многообразиях (см., например, [2]).

Важный подкласс среди всех многообразий формируют изотропно-точные однородные пространства. В частности, этот подкласс содержит все однородные пространства, допускающие инвариантную аффинную связность. "Необходимость сравнивать те или иные геометрические величины в разных точках "кривого" пространства делает понятие связности одним из важнейших в геометрии и физике" [3]. Также связности – важнейший объект, к которому приводит геометрическая формулировка теории поля. Рассмотрим проблему классификации четырехмерных изотропноточных однородных пространств с инвариантной невырожденной почти симплектической структурой и нахождения инвариантных связностей на таких пространствах.

Пусть (\overline{G}, M) – четырехмерное однородное пространство, где \overline{G} – группа Ли на многообразии M. Зафиксируем произвольную точку $x \in M$ и обозначим через $G = \overline{G}_x$ ее стабилизатор. Поставим

в соответствие (\overline{G},M) пару $(\bar{\mathfrak{g}},\mathfrak{g})$ алгебр Ли, где $\bar{\mathfrak{g}}$ – алгебра Ли группы \overline{G} , а \mathfrak{g} – подалгебра в $\bar{\mathfrak{g}}$, соответствующая подгруппе G. Изотропный \mathfrak{g} -модуль \mathfrak{m} – это \mathfrak{g} -модуль $\bar{\mathfrak{g}}/\mathfrak{g}$ такой, что $x.(y+\mathfrak{g})=$ = $[x,y]+\mathfrak{g}$. Соответствующее представление $\lambda\colon\mathfrak{g}\to\mathfrak{gl}(\mathfrak{m})$ является изотропным представлением пары $(\bar{\mathfrak{g}},\mathfrak{g})$. Пара $(\bar{\mathfrak{g}},\mathfrak{g})$ называется изотропно-точной, если ее изотропное представление – инъекция. Назовем пару $(\bar{\mathfrak{g}},\mathfrak{g})$ эффективной, если подалгебра \mathfrak{g} не содержит ненулевых идеалов алгебры Ли $\bar{\mathfrak{g}}$. Проблема классификации однородных пространств (\bar{G},M) равносильна классификации (с точностью до эквивалентности) пар групп Ли (\bar{G},G) таких, что $G\subset \bar{G}$ (см., например, [4]). Используя линеаризацию, эту проблему можно свести к классификации эффективных пар алгебр Ли $(\bar{\mathfrak{g}},\mathfrak{g})$ с точностью до эквивалентности пар [5].

Пространство B(m) билинейных форм на m естественным образом становится g-модулем, если положить $(x.b)(v_1,v_2)=-b(x.v_1,v_2)-b(v_1,x.v_2)$, где $x\in \mathfrak{g},v_1,v_2\in \mathfrak{m},b\in B(\mathfrak{m})$. Почти симплектической структурой на g-модуле m называется невырожденная кососимметрическая билинейная форма $b\in B(\mathfrak{m})$ такая, что x.b=0 для всех $x\in \mathfrak{g}$. Не ограничивая общности, можно считать, что алгебра Ли g является подалгеброй в линейной алгебре Ли $\mathfrak{sp}(4,P),P=\mathbb{R}$ или \mathbb{C} .

Решение проблемы классификации изотропно-точных пар разобьем на следующие этапы: классификация с точностью до сопряженности всех подалгебр $\mathfrak g$ алгебры Ли $\mathfrak sp(4,P)$, для каждой найденной подалгебры $\mathfrak g$ – классификация (с точностью до эквивалентности) изотропно-точных пар $(\bar{\mathfrak g},\mathfrak g)$, у которых изотропное представление сопряжено подалгебре $\mathfrak g$. Алгоритм нахождения почти симплектических изотропно-точных пар подробнее описан в работе [6], там же даны основные определения и приведено обоснование применяемых методов.

Аффинной связностью на паре $(\bar{\mathfrak{g}},\mathfrak{g})$ называется такое отображение $\Lambda:\bar{\mathfrak{g}}\to \mathfrak{gl}(\mathfrak{m}),$ что его ограничение на \mathfrak{g} есть изотропное представление подалгебры, а все отображение является \mathfrak{g} -инвариантным. Инвариантные аффинные связности на однородном пространстве (\bar{G},M) находятся во взаимно однозначном соответствии с аффинными связностями на паре $(\bar{\mathfrak{g}},\mathfrak{g})$ (см., например, [7]). Тензор кручения $T\in \mathrm{Inv}T_2^1(\mathfrak{m})$ имеет вид $T(x_{\mathfrak{m}},y_{\mathfrak{m}})=\Lambda(x)y_{\mathfrak{m}}-\Lambda(y)x_{\mathfrak{m}}-[x,y]_{\mathfrak{m}},$ а тензор кривизны $R\in \mathrm{Inv}T_3^1(\mathfrak{m})$ – вид $R(x_{\mathfrak{m}},y_{\mathfrak{m}})=[\Lambda(x),\Lambda(y)]-\Lambda([x,y])$ для всех $x,y\in \bar{\mathfrak{g}}.$ Алгебра Ли группы голономии инвариантной связности Λ на паре $(\bar{\mathfrak{g}},\mathfrak{g})$ – это подалгебра алгебры Ли $\mathfrak{gl}(4,P)$ вида $V+[\Lambda(\bar{\mathfrak{g}}),V]+[\Lambda(\bar{\mathfrak{g}}),[\Lambda(\bar{\mathfrak{g}}),V]]+\dots$, где V – подпространство, порожденное множеством $\{[\Lambda(x),\Lambda(y)]-\Lambda([x,y])|x,y\in \bar{\mathfrak{g}}\}.$ Тензор Риччи Ric имеет, соответственно, вид Ric(y,z) = $\mathrm{tr}\{x\mapsto R(x,y)z\}$. Аффинная связность называется почти симплектической, если она равна нулю на 2-форме. Связности, совместимые с симплектической структурой, находят применение в теоретической физике, в геометрической теории интегрируемых гамильтоновых систем и других областях современной науки.

Проведено локальное описание четырехмерных изотропно-точных почти симплектических однородных пространств и инвариантных аффинных связностей на таких пространствах, их тензоров кривизны, кручения, алгебр голономии, тензоров Риччи.

Литература

- 1. Арнольд В.И. Математические методы классической механики. М.: Наука, 1974.
- 2. Vaisman I. *Hamiltonian vector fields on almost symplectic manifolds //* Journal of Mathematical Physics, 2013. Vol. 54, No 9. Art. 092902.
- 3. Алексеевский Д. В., Виноградов А. М., Лычагин В. В. *Основные идеи и понятия дифференциальной геометрии //* Итоги науки и техники. Совр. пробл. мат. Фундамент. направл. М.: ВИНИТИ АН СССР, 1988. Т. 28. С. 5–297.
 - 4. Онищик А. Л. Топология транзитивных групп Ли преобразований. М.: Физ.-мат. лит., 1995.
- 5. Mostow G. D. *The Extensibility of Local Lie Groups of Transformations and Groups on Surfaces //* Ann. Math., 1950. Vol. 52:3. P. 606–636.
- 6. Можей Н. П. *Четырехмерные однородные пространства с почти симплектической структурой. Комплексный случай* // Труды БГТУ. Сер. 3. Физ.-мат. науки и информ. Минск: БГТУ, 2021. № 1 (242). С. 13–18.
- 7. Nomizu K. *Invariant affine connections on homogeneous spaces //* Amer. Journ. Math., 1954. Vol. 76., No 1. P. 33–65.