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Abstract. The solvability of the Navier-Stokes equations system in a rectangular
pipe (three-dimensional case) is investigated. The study is performed on time
layers with a step t.
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The paper investigates the existence and uniqueness of a solution to a bound-
ary value problem for the Navier-Stokes equations in a rectangular pipe with
smoothed corners. First, we smooth out all the dihedral and trihedral angles and
obtain the region shown in Figure 1 (first smoothing). The vertices are also marked
onit. 4,8,C,D,4,,B,,C,,D, of the original rectangular pipe, which are numbered
in the order specified above by digits (in the figure, the digits are shown in paren-
theses near the corresponding vertices).

Rectangle AA B B is the entrance to the original pipe (before smoothing the
corners), rectangle CC D D is its exit. Continuing smoothing, we smooth the en-
trance and exit in such a way that the smoothed surface, for values . x, . satisfying
the inequalities: 0< x, <& and .- 5 < x, < L (seeFigure 1), does not contain either
flat or rectilinear parts and is a convex smooth surface, being a connected open set
on the boundary of the convex body (second smoothing). This part of the surface is
not solid. The solid part of the surface lies in the interval 6§ <x, <L -5 . To clarify,
we note that after the second smoothing, the plane touches the smoothed surface

at the point xO(O,%,%), and the plane x, =L — touches the point xL(L,%,%).
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Let us adopt the following notations:
x=(x,%,%), 0<x <LO0<x,<H,0<x,<H,. 0<t<T, Q=(0,L)x(0,H,)x(0,H;),
edges:

Ci3)

Figure 1.
=[0<x,<L0=<x,<H,x;,=0] - lower, §,=[0<x<L0<x,<H,x,=H,] - top,
=[0<x<L,x,=00<x,<H,] - front, §,=[0<x<Lx,=H,0<x,<H,] - back

S;=[x,=00<x,<H,0<x, <H;] —left, S, =[x, =L,0<x,<H,0<x, <H,] — right (these are

6
the edges of the original region), § =USk — boundary of the region Q, §,=8x[0,T],

k=1
Q, =0x[0,T] .

Let us designate § — the surface obtained from the surface S as a result of
the second smoothing, & — area bounded by a surface S, 00G=QUS,Q, = Qx[0,T],
5, =8 x[0,7] G =Qx[0,7]. The solid part of the surface (it lies in the gap <, <L-&
) let us designate 5.

Let’s consider the problem (density p=1, on a hard surface |§ =0, i=123):

> du Op ) . =
o _ iyt B G g s Ne,» 9]
ar Zﬁxk ; Yox, ox aii=ty
%_,_%4_%:0, (x,t)eﬁn 2)
Ox, 0Ox, o0x,
”1‘::0 =bh(x) xeQ, E§=0, AR =@ (s.0) (s,0) €S, 3)

We proceed to setting the initial conditions for the velocity components u,
and u,. The set of actions for finding the functions %, , #,, we denote as point 1).
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6u1 5 9% 6 -0 for

ou,
1). Assuming for now that —>=0_ we solve the equation

8x
the velocity u,. For any fixed value x, , 0<x, <H,, we solve this equatli)n in the

same way as it is solved in [1]. The resulting solutlon, which we denote by | as
shown in [1], satisfies both the equation being solved and the no-slip conditions
on solid sections of the boundary. Having obtained the solution uy , we consider
the equation (in the region S')
2 2
P, O 00
o o Ox, Ox,

This equation, according to the well-known Schauder theorem (its proof is,
for example, in [2]), has a unique smooth solution (in an arbitrary section S
of the domain by a plane x, =x®, 0<x{” <H,), which we denote #,. Solu-
tion ,, for any fixed value x,, <x <H (at x; =0 and x; =H, 7, =0), we
continue until the entrance and exit of the entire three-dimensional region with
vertices 4,B,C,D, 4,,B,,C,,D, . The latter is performed in the same way as,
for example, in [1]. For the extended function, now defined in the entire rectan-
gular parallelepiped, we retain the previous notation #,. Similar to solving the

equation Gy | Gty =0, it was decided above relatively u,, we solve the equation

x
O, | Oy % _o relatively u, with known functions x, and #,. Indeed,
i 0 y U 1

ox, Ox, Odxy
I suppose Z”l % =u, we get the equation 3 + 23 Oty —¢ of type Ouy o Ouy _ o and

My X, ax;  Ox;
we denote its solution as #,. Function 7, satisfies the equation
o O, 0F @)
ox, ox, ox,

2). So, in point 1) the functions (transverse velocities) z, and #, . In this point 2),
by swappmg the roles: functions ,, and ., variables x, and X;,i.e. u, < u,,

ou O O _ox,<>x,. starting with solving the equation %4 ,% _, and
ox, o, 6x3 ox,  Ox,
performing actions completely analogous to the actions of point 1), we find the

functions #, and #,, satisfying the equation

ou  Ouy, Oy (5)
ox, Ox, Ox,
Having designated u,, :%@ YE). w —— 7 +7 . Let’sadd (4) and (5). As

a result, we get _ _
J0 5 10 +T) o VO +T) o o ow Oy Oy,
Ox, 2 Ox, 2 Ox oy, Ox, Ox
The initial value of the longitudinal velocity was known and given by
the equality u1|,:0 =bhi(x). Let’s put it for uniformity u1|,:0 =u,,, then we get
Gy, Oy Oy -

ox, Ox, Ox
R 2l [ 147
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So, we have initial conditions for all equations (1), and they satisfy the conti-
nuity equation (2). Let us introduce the notation

EED AT 3

klaxk =1

> 1=123

(at ¢ = =0) and agreement: further, for pairs of identical indi-
ces, summation is 1mpheéi with a change in the 1dentlcal index from the number

to, in particular, if necessary, write down the sum Zb,(X)— You can apply both

the left and right sides of the following equation: Zb (x)— b(x )— Let’s con-
sider Poisson’s equation

362}7_36147(0), xeﬁ

Z} o’ _21: ox,

xl

with a condition on the border § : 4,(x)

65 +b(x)p=g(s), where x=s ¢ S . Functions

b(x), b(x) and ¢(s) we define below. Introducing denoting: for the Laplace

operator 231:2;2 — Ap, for boundary operator bi(x)ﬁ_p +b(x)p — Bp. for function
23: a:;‘w) - f (lx), we get the task o,
c A= (). Bply=0(). ©)
It is known that if an elliptic operator has the form Lu=aq, (x) ax‘ +a, (x) +a(x)u,
then for the task / .
Lu—Ju=f(x), Bul;=0(s), @)

where A — complex parameter, the following theorem is true.

Theorem 1. Let the boundary S surface Q) be a surface of class C*“, coef-
ficients a, a, a of the operator L belong c*(Q) and the ellipticity condition is
satisfied

a,(x)&E; 2 vE:,  v=const>0.

Let the coefficients b, (x) and b(x) boundary operator Bu=b, (x)—+b(x)u

there are elements C*% (S ),

Zbi(x)cos(ﬁ, x) 2vy vo=const>0 ®)
= g

and let it be £(x)eC*(Q), @(s)eC*“(S). When problem (7) is uniquely solvable
in c¥e(Qy forany f u ¢ from the specified classes for all 1, except for no more
than a countable number of values 3, 2,, ..., constituting the spectrum of prob-
lem (7). The inhomogeneous problem (7) is not solvable for all y and ¢ (see. [4],
chapter I11, § 3).

Note 1. From the proof of Theorem 1 given in [4], in particular, it follows
that the problem is uniquely solvable Lu= f, Bu|§ =@(s),1. ¢. tasks (7) at 1 =0

148 ‘l International Conference



FEHAEFIRPRT T P FA— A

. But the point is that this occurs when the inequalities are satisfied a(x)<0 and
b(x)> 0. In general, any case a(x) from C*(Q) and h(x) from C"*(S) this
is not true if the value A =0 belongs to the spectrum specified in Theorem 1.

Let in the problem Ap = f(x). to be inequality Bpl, =@(s) b(x)>0 and on
the border S function p(x) is bounded above by some sufficiently small positive
constant /£, i.e. the inequality is true p(x) < 8. S >0. Then the task is

Ap=f(x), Bpls=9(s),

+b(x)p , under the conditions of Theorem 1, it is uniquely solv-

where Bp =b,(x) %P
ox,
able. i )
We will achieve the fulfillment of condition (8) by setting bl(x)=5+ cos(77,x,),
b,(x)=n,(x)+cos(T,x,). i=23, where cos(w,x,). i=12,3 — direction cosines of
a unit vector 7 =#(x) external normal to § at the point x, and 7,(x) is defined
as follows: 7(x)=-1, at 0<x, ng,.; -1<n(x)<1, at 3 <x<ZHL p(o=1,
at EHZ <x <H,; i=23, at the same time x ¢ ]fz function 5, (x) fairly smooth,
changes from to monotonously and 7,(x) at x, = 5 H, equals zero: 7,(x)| =0,

5=05H,
Note: when the point xe S and =%Hl (i=23), x,=0 or x,=L . This means
that b,(x) =7,(x)+cos(77,x,), i=2,3, vanishes only at points on the surface S
with coordinates (0,%,%) " (L,%,%).
Problem (6) takes the form
Ap=f(x), Bpls=0(s), )

3 (0
where f(x) =ZM , coefficients 5 (x) and &(x) indicated above, @(x)="b,(x)A".

i=1 i

We see that the boundary condition has the form bi(x)s—erb(x)p:bi(x)Afo),
X,

which is not consistent with equations (1), each of which, b(x)=0 can be
written as b,.(x)%zb,.(x)Afo) (here the convention of writing the sum is
not applied, but three equalities are written). Summing the last three
equations, we obtain b,-(x)%=b,-(x)z4,-(°) (now the convention of

recording the amount is applied).lThe following considerations will help to
get rid of the indicated discrepancy (they are contained in [4], Chapter X, § 1).

In a limited area ) The following types of problems are considered:
2

L(u)=a, (x,u,u) Py +a(xu,u,)=0> (10)
. Ox,0x
® (u) = [b(x,u,ux) +b,(x,u)u, +b, (x,u)]g =0, (1D

E[ZE | 149



Scientific research of the SCO countries: synergy and integration

under the assumption that equation (10) is uniformly elliptic and for arbitrarily
fixed # and p and at each point xS vector /(x,u, p) with components
b, (x,u, p)+b,(x,u) does not lie in tangent to S planes. More precisely, it is
believed that

[bpl(x,u,p)+bi(x,u)]cos(ﬁ,xi) v, (ulLlp). v,>0. (12)

The question of the solvability of problems (10), (11) is reduced to the ques-
tion of the existence of fixed points for transformations with good properties, and
some transformation is considered y = ®(v). Itis noted that the Leray-Schauder
criterion for the existence of fixed points cannot be applied to the transformation
under consideration, and it is immediately noted that this is possible in the case
when p(x,u,u,)=0. Recalling problem (9), we see that in our case the last iden-
tity holds . And yet we will dwell on the transformation , since it is necessary to
get rid of the term in the boundary operator. The consideration leads to the proof
of the theorem on the solvability of abstract equations in Banach spaces and the
subsequent clarification of the requirements for ®(v) .

Theorem 2. Let X and Y — be two Banach spaces, I — be a segment of [0,1]
,a x, y and ¢t —elements X, ¥ and I respectively. Let’s suppose @ — con-
tinuous mapping of the direct product X x1 ¢ Y , having a derivative ® (x,7)
, continuous with (x,t) respect to in the operator topology L{X - Y}, and sat-
isfying the following conditions:

1) For any solution x ofthe equation

D(x,7)=0, (13)
answering to an arbitrary v from I, operator ® (x,t) has a limited inverse
O '(x7): Y > X.

2) The set of all solutions of equation (13) that correspond to all 7€ I, com-
pact in space X .

3) For some fixed 7 firom I there is only one solution x equations (13).

Then for each T € I equation (13) is uniquely solvable in X .

To reduce the solution of problem (10), (11) to Theorem 2, two Banach spac-
es are introduced: as X is taken C*“((}), and as a space of pairs of elements
y={f.0}. where /() eC*(@). p(s)eC**(S). Withthe norm |y], = |/ +lglg"™ .

Problem (10), (11) is included in the family of problems that depend on the
parameter 7 €[0,1]:

U

5

L) =d(uw)+(1-0)L(u)=0,xeQ, } (14)
ISwW=d®w+1-DIPw)=0,xeS,

where 7, u LE)E ) — differential operators of the same type as L and I accord-
ingly, and with the value 7 =0 of problem (14) is uniquely solvable in c>=(().
It is clear that taking as an operator LE)E ) operator by( x)(%” +b(x)u. we will achieve

i
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solvability of (14) for the value 7 = 0 and satisfy condition 3) of Theorem 2. With-
out further considering the contents of § 1, Chapter X of [4], we simply note that
it implies the existence of a unique solution to problem (9) with the boundary

operator bz(x)s—f. Indicating this solution p , we begin to solve the system (1) —
(3) with the values ¢>0.

To find functions #,, i=1,2,3, and pressure p atvalues >0 we will resort
to Rothe’s method, which essentially reduces the proofs of existence theorems for
solutions of initial-boundary value problems for parabolic equations to boundary
value problems for elliptic equations (see [1], [3]).

. : . T
We will dissect the cylinder Q. planes ¢, mz, m=0,1, .., M, 7=

Ve
and we denote ) section (3, plane ¢t =mz. S, —itsborder, § =0 US . At
each section ﬁm Let’s define the functions that we will denote Upys Uy, s Us,
. p,» m=0 . The solution was found above for the value =0, 1. e. functions
Uyg> Uy Uy Py To find the values Uy Uy > Us o Dy at m=12,...M we in_
troduce the difference derivative and replace the derivatives in equations (1) — (3) 24 =

Ou,

difference derivatives u, :l(”,m ~-u, ) Since now the derivatives a 20,
T t

then the expressions for will change accordingly A = vz = = ; e
i =1.2.,3. The movement along time sections occurs in the same way as in [1]. Let
us arrive at the theorem.

Theorem 3. Let the following conditions be satisfied. Sec, B(x)e C”“(E);
7,eC*(S,), fe c*Q), g@ec*@§). Then problem (1) — (3), in which the
derivatives O replaced by difference derivatives, for any [=1,=mT, m=0M,

and small enough has a unique solution, and 4, C3+“(5m), ] (Em ).
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