УДК 535.015, 53.06

ЗАРЯДОВЫЕ СВОЙСТВА ГЕТЕРОСТРУКТУРЫ ПЛЕНКИ УГЛЕРОДНЫХ НАНОТРУБОК НА КРЕМНИИ ПРИ ОБЛУЧЕНИИ УЛЬТРАФИОЛЕТОМ

Курапцова А.А., Данилюк А.Л.

Белорусский государственный университет информатики и радиоэлектроники, Минск, Республика Беларусь, <u>anku21qwerty@gmail.com</u>

Аннотация: В работе путем компьютерного моделирования с помощью программного пакета Comsol Multiphysics исследуются зарядовые свойства гетероструктуры пленка одностенных углеродных нанотрубок (OУHT) на кремнии в условиях падающего на гетероструктуру излучения длиной волны 300 нм. В результате моделирования были обнаружены зависимости поверхностной плотности электрического заряда σ и потенциала V_s от энергии *E*_t ловушечных состояний на поверхности пленки, монотонное уменьшение данных значений с ростом *E*_t, а также отличие в значениях данных величин в условиях наличия падающего излучения и его отсутствия. Наибольшая разница в значениях σ при наличии излучения и его отсутствии была обнаружена при *E*_t=0 эВ и составила 10⁻⁶ мкКл/см⁻². Различие в значениях *V*s слабо отличалось для каждого значение энергии *E*_t и составляло примерно 47 мВ.

Ключевые слова: углеродные нанотрубки, кремний, гетероструктура, пленка, ультрафиолетовое излучение.

I. ВВЕДЕНИЕ

Углеродные наноматериалы представляют широкий класс соединений: графен, фуллерены, нанотрубки, нановолокна и другие. Одна из таких макроструктур – пленки, составленные из углеродных нанотрубок, которые ориентированы в случайном порядке. Пленка ОУНТ состоит из переплетенных нанотрубок, каждая из которых характеризуются своими свойствами, такими как диаметр, длина, хиральность и т.д. Однако пленку ОУНТ можно рассматривать, как целостный объект, что упрощает интерпретацию данных [1].

Среди потенциальных применений гетероструктур на основе углеродных композитов в различных областях электроники следует особо отметить их перспективность в оптоэлектронике. Перспективной для оптоэлектроники является гетероструктура пленка ОУНТ/кремний, зарядовые свойства которой рассматриваются в данной работе. Это связано с рядом отличительных особенностей ОУНТ, таких как низкое удельное сопротивление, высокая прозрачность в видимом и ближнем ИК-диапазоне, возможность гибкой настройки свойств материала за счет изменения параметров роста или химического легирования, стабильность при температурах, значительно превышающих комнатную, прямая запрещенная зона [1]. В работах последнего десятилетия продемонстрирована перспективность использования гетеропереходов ОУНТ/кремний в качестве солнечных элементов для преобразования энергии, а также эффективных сверхбыстрых широкополосных фотодетекторов [2]. Свойства и, в частности, электропроводность ОУНТ зависит от множества факторов их формирования [3], что позволяет создавать углеродные нанотрубки с заранее заданными свойствами.

Ультрафиолетовое излучение – электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями. Длины волн УФ-излучения лежат в интервале от 10 до 400 нм (7,5·10¹⁴-3·10¹⁶ Гц), что соответствует энергии излучения 124 – 3,1 эВ. Подавляющая часть УФ-излучения, испускаемого Солнцем, поглощается озоном, парами воды, кислородом и углекислым газом. Но благодаря созданию и совершенствованию искусственных источников УФ-излучения сейчас возможно получение излучения с длиной волны начиная от десятка нанометров, что находит применение в различных областях, таких как медицина, обеззараживание воздуха и поверхностей, косметология, криптография, хроматографический анализ, биотехнологии, масс-спектроскопия, сельское хозяйство и многих других [4].

II. МЕТОДИКА МОДЕЛИРОВАНИЯ

В данной работе рассматривается гетероструктура пленка одностенных углеродных нанотрубок (ОУНТ) на кремнии. Целью данной работы является моделирование зарядовых свойств гетероструктуры пленка ОУНТ толщиной 50 нм на кремниевой подложке толщиной 2 мкм. В процессе формирования пленки ОУНТ на кремнии образуется тонкий слой оксида кремния SiO₂, в исследуемой модели толщина слоя SiO₂ составляла 2 нм.

Моделирование было проведено с помощью программного пакета Comsol Multiphysics на основании решения модели Андерсона для полупроводниковых гетеропереходов, решения уравнения Пуассона,

уравнений непрерывности для электронов и дырок и уравнений Максвела для электромагнитных волн. Моделирование проводилось на основании двумерной модели.

Длина волны падающего на структуру излучения λ=300 нм. Плотность мощности излучения составляла 1000 Вт/м². Для ОУНТ, кремния и оксида кремния задавался комплексный показатель преломления, его действительная *n* и мнимая *k* части [5,6,7].

Основные свойства использованных материалов представлены в табл. 1.

	n-Si	SiO ₂	n-ОУНТ
Ширина запрещенной зоны, эВ	1,124	8	0,3
Сродство к электрону, эВ	4,05	0,75	4,2
Относительная диэлектрическая проницаемость	11,7	3,9	4,75
Время жизни электронов, мкс	10	0,012	0,0004
Время жизни дырок, мкс	10	0,012	0,0004
Концентрация примеси, см ^{-з}	10 ¹⁶	-	10 ¹⁸
Подвижность электронов, см²/(В·с)	1450	21	56
Подвижность дырок, см²/(В·с)	500	0,0001	56
Показатель преломления:			
- действительная часть <i>п</i>	4,976	1,46	1,51288
- мнимая часть <i>к</i>	4,234	0,0019	0,64472

Таблица	1. Па	раметры	мате	риалов

В процессе формирования пленки ОУНТ на поверхности возникают различные ловушки носителей заряда. В основном они вызваны адсорбцией ионов кислорода О⁻, что обеспечивает п-тип проводимости ОУНТ [1]. Ловушечные состояния возникают также в оксиде кремния на поверхности кремниевой подложки. На поверхности ОУНТ были заданы ловушечные состояния донорного типа плотностью 10¹² см⁻² и с энергией *E*_t от 0 до 0,1 эВ считая от дна зоны проводимости [1], в объеме SiO₂ были заданы ловушки донорного типа плотностью 10¹² см⁻³ и энергией 0,34 эВ считая от дна зоны проводимости [8].

В результате моделирования гетероструктуры была получена зависимость плотности электрического заряда σ на поверхности пленки ОУНТ от энергии ловушечных состояний *E*_t (рис. 1) при облучении светом длиной воны 300 нм.

При наличии падающего на гетероструктуру излучения длиной волны 300 нм плотность заряда σ на поверхности пленки с увеличением значения E_t монотонно уменьшается от σ =3,6·10⁻⁴ мкКл/см² при E_t =0 эВ до σ =1,1·10⁻⁵ мкКл/см² при E_t =0,1 эВ. При отсутствии падающего излучения σ также монотонно уменьшается при росте E_t и незначительно превосходит значения σ в условиях наличия излучения, при E_t =0 эВ на 10⁻⁶ мкКл/см² и при E_t =0,1 эВ на 1,5·10⁻⁹ мкКл/см².

Также была получена зависимость электрического напряжения V_s от энергии ловушечных состояний E_t . Как при наличии излучения, так и при его отсутствии значение V_s монотонно уменьшалось при росте E_t на величину 0,5 мВ и 0,17мВ, соответственно. Но в условиях падающего излучения значения V_s были существенно выше, чем при его отсутствии, при E_t =0 эВ 119,7 и 72,4 мВ, соответственно. Для всех значений E_t различие V_s оставалось приблизительно одинаковым, 47,4 мВ для E_t =0 эВ и 47,04 мВ для E_t =0,1 эВ.

Для объяснения полученных результатов была построена энергетическая диаграмма структуры по оси перпендикулярной поверхности пленки (рис. 2). Разрыв между зонами проводимости кремния и пленки ОУНТ, препятствующий току электронов из пленки ОУНТ в кремний, составил 0,22 эВ. Разрыв между валентной зоной кремния и пленки ОУНТ составил 0,6 эВ, и также блокировал протекание дырок из пленки ОУНТ в кремний.

Рисунок 2. Энергетическая диаграмма гетероструктуры Si/OУHT

Плотность тока электронов через границу раздела кремний/ОУНТ при облучении структуры излучением длиной волны 300 нм составила приблизительно 47 А/см² в направлении из кремния в пленку ОУНТ, в то же время при отсутствии облучения плотность тока электронов составляла 527 А/см². Плотность тока дырок через границу кремний/ОУНТ составила приблизительно 0,006 мкА/см² при отсутствии излучения, а при его наличии показала зависимость от энергии *E*_t, монотонно снижаясь от 2,9 мкА/см² при *E*_t=0 эВ до 0,55 мкА/см² при *E*_t=0,1 эВ.

Скорость генерации носителей заряда у поверхности пленки ОУНТ равняется 2,72·10¹⁶ см⁻²с⁻¹, а в кремнии около границы раздела кремний/ОУНТ 1,37·10¹⁵ см⁻²с⁻¹. Концентрация дырок в кремнии около границы раздела равна 740 см⁻³ при отсутствии падающего излучения и 1,3·10⁵ см⁻³ при его наличии. Концентрация дырок в пленке ОУНТ около границы раздела кремний/ОУНТ достигала 5,4·10¹² см⁻³ при отсутствии падающего излучения и 3,4·10¹³ см⁻³ при его наличии.

Плотность тока дырок, в отличие от плотности тока электронов, через пленку ОУНТ показала зависимость от энергии *E*_t, около поверхности пленки 0,19 мА/см² при *E*_t=0 эВ и 2,7 мкА/см² при *E*_t=0.1 эВ. При п-типе легирования кремниевой подложки уменьшение толщины пленки ОУНТ вероятно позволит увеличить концентрацию дырок на границе раздела кремний/ОУНТ за счет увеличения скорости генерации носителей заряда в кремнии.

III. ЗАКЛЮЧЕНИЕ

Результаты моделирования зарядовых процессов в гетероструктуре кремний/пленка ОУНТ при облучении электромагнитными волнами с длиной волны 300 нм показали зависимость зарядовых свойств гетероструктуры от параметров ловушечных состояний на поверхности пленки ОУНТ.

Полученные результаты продемонстрировали возможность управления работой фотоэлектрических устройств в ультрафиолетовой области электромагнитного излучения, а также необходимость разработки методов формирования пленок ОУНТ с гибким контролем их свойств, в частности параметров ловушечных состояний.

ЛИТЕРАТУРА

[1] Infrared photodetectors based on multiwalled carbon nanotubes: Insights into the effect of nitrogen doping / R. Kumar [et al.] // Applied Surface Science. – 2021. – Vol. 538. – P. 148187-148197

[2] Hu, X. Carbon nanotube/silicon heterojunctions for photovoltaic applications / X. Hu, P. Hou, C. Liu, H. Cheng // Nano Materials Science. 2019. Vol. 1. P. 156–172.

[3] Шандаков, С. Д. Допирование углеродных нанотрубок и графена / С. Д. Шандаков, А. И. Вершинина, М. В. Ломакин, А. В. Кособуцкий, А. Г. Насибулин // Вестник Кемеровского государственного университета. – 2015. - № 2 (62) Т. 5. – С. 127-131.

[4] Evaluation of the Degradation of Materials by Exposure to Germicide UV-C Light Through Colorimetry, Tensile Strength and Surface Microstructure Analyses / O. Mitxelena-Iribarren [et al.] // Materials Today Communications. Elsevier. 2022. Vol. 31. P. 103690.

[5] Green, M. A. Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients / M. A. Green // Solar Energy Materials & Solar Cells. 2008. Vol. 92. P. 1305-1310.

[6] Express determination of thickness and dielectric function of single-walled carbon nanotube films / G. A. Ermolaev [et al.] // Appl. Phys. Lett. 2020. Vol. 116. P. 231103.

[7] Rodríguez-de Marcos, L. V. Self-consistent optical constants of SiO2 and Ta15 films / L. V. Rodríguez-de Marcos, J. I. Larruquert, J. A. Méndez, J. A. Aznárez // Opt. Mater. Express. 2016. Vol. 6, No. 11. P. 3622-3637.

[8] Дементьев, П.А. Ловушки в нанокомпозитном слое кремний-диоксид кремния и их влияние на люминесцентные свойства / П. А. Дементьев, Е. В. Иванова, М. В. Заморянская // ФТТ. 2019. № 61(8). С. 1448-1454.

CHARGE PROPERTIES OF A HETEROSTRUCTURE OF CARBON NANOTUBES FILM ON SILICON UNDER ULTRAVIOLET IRRADIATION

A. Kuraptsova, A. Danilyuk

Belarusian State University of Informatics and Radioelectronics, Minsk, Republic of Belarus, anku21qwerty@gmail.com

Abstract: In this work, the charge properties of a heterostructure of a single-wall carbon nanotubes (SWCNT) film on silicon under irradiation of 300 nm wavelength are investigated by using computer modeling with the Comsol Multiphysics software package. As a result of modeling, the dependences of the surface electric charge density σ and the potential V_s on the energy E_t of trap states on the film surface, a monotonic decrease in these values with increasing E_t , as well as a difference in these values under conditions of the presence of incident irradiation and its absence were found. The greatest difference in the σ values in the presence and absence of irradiation was found at $E_t=0$ eV and was $10^{-6} \,\mu\text{C/cm}^{-2}$. The difference in the V_s values was slightly different for each value of the energy E_t and was approximately 47 mV.

Key words: carbon nanotubes, silicon, heterostructure, film, ultraviolet radiation.