
Journal of Engineering Research xxx (xxxx) xxx

Please cite this article as: Hao Li et al., Journal of Engineering Research, https://doi.org/10.1016/j.jer.2024.07.011

Available online 17 July 2024
2307-1877/© 2024 The Authors. Published by Elsevier B.V. on behalf of Kuwait University. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

An energy efficient clustering algorithm based on density and fitness for
mobile crowd-sensing network

Hao Li a,1, Hongwei Wang b,1, Kaiyu Wang a, Tonghui Qu c, Xunhuan Ren a, Jun Ma a,*

a Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
b Forestry School of materials Engineering Northeast Forestry University, HeiLongJiang 150040, China
c Hangzhou Hikvision Digital Technology Co., Ltd., Hangzhou 310052, China

A R T I C L E I N F O

Keywords:
Mobile crowd-sensing
Clustering algorithm
Energy efficient
Node density

A B S T R A C T

Mobile crowd-sensing (MCS) is a cutting-edge paradigm that gathers sensory data and generates valuable insights
for a multitude of users by utilizing built-in sensors and social applications in mobile devices. This enables a
broad spectrum of Internet of Things (IoT) services. We introduce a novel MCS algorithm, Mobile Crowd-sensing
Low Energy Clustering (MCLEC), which employs advanced clustering techniques to address issues of data
oversampling and energy inefficiency prevalent in MCS networks. MCLEC innovatively adjusts clustering radii
based on local node density and the proximity of nodes to the cloud server, thus optimizing data transmission
paths and reducing energy consumption. A pivotal enhancement in MCLEC is its cluster head election strategy,
which prioritizes leaders based on their energy levels and mobility, thereby enhancing network stability and
minimizing the frequency of head re-elections. Our comparisons with established algorithms such as LEACH,
LEACH-C, LEACH-M, DEEC, and SEP show that MCLEC significantly improves energy efficiency, reduces server
load, and prolongs the lifespan of network nodes, establishing it as an effective solution for IoT applications
dependent on MCS. Additionally, MCLEC was compared with other novel clustering algorithms including E-
FLZSEPFCH, DFLC, ECPF, ACAWT, UCR, CHEF, and Gupta’s algorithm. The results indicate that MCLEC also
surpasses most of these algorithms in terms of energy consumption and network lifetime.

Introduction

Mobile crowd-sensing (MCS) application [1] is proposed as a new
perceptual style of the Internet of Things when mobile wireless sensor
technology and mobile sensing devices are ubiquitous. MCS application
combines crowdsourcing ideology [2] and mobile wireless sensor net-
works and breaks the rules of local perception in traditional wireless
networks. Through network awareness cooperation, it forms a MCS
network, and completes the distribution of perception tasks, data
collection, and processing, thus completing a large number of complex
social sensing tasks [3].

Due to the diversity of mobile wireless sensors, the MCS network has
achieved good performance in environmental monitoring [4], intelli-
gent transportation [5], public security [6], and social services [7]. A
variety of MCS technologies have been developed and designed in the
research and industrial fields [8–10]. But they all have single data
collection, unbalanced resource allocation, and excessive energy

consumption. Whether based on the data collection method of the mo-
bile convergence node or single-hop communication, the mobile sensing
node directly communicates with the cloud. Directly uploading a large
number of raw sensing data to the cloud for processing will not only
cause load imbalance but also cause excessive energy consumption and a
short network life cycle. At the same time, the transmission mode with
high energy consumption will increase the energy consumption of the
network, and shorten the life cycle of the network, which reduces the
willingness of users to participate. Li et al. [11] introduced a clustering
algorithm aimed at discovering routes on demand, with a specific focus
on mitigating node energy consumption in unique circumstances.

Before the popularity of mobile wireless sensor networks (WSN),
traditional static WSN [12] put forward the concept of clustering to
expand network coverage, shorten transmission distance, and reduce
network energy consumption. Clustering network structure has good
scalability and robustness [13]. It can save energy, balance the load, and
distribute resources reasonably. So clustering algorithm has become one
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of the main methods to extend the life cycle of WSNs and reduce the
energy consumption of nodes at home and abroad. In the study, the idea
of clustering is proposed to reduce the energy consumption of the
network. When a static clustering algorithm is applied to a mobile
crowd-sensing network, it can not form a complete network topology
quickly, resulting in the rapid energy consumption of nodes. LEACH-M,
as a traditional static routing protocol over to mobile routing protocol,
also has the problems of random cluster head (CH) election and uneven
cluster head distribution. If the LEACH-M algorithm is directly intro-
duced into a large-scale mobile crowd-sensing network, it will directly
lead to a serious imbalance of network energy consumption and load,
and cannot guarantee the stability of network performance. Therefore,
the traditional clustering algorithm is not suitable for the MCS network.

Firstly, the network is divided into clusters. Before the cluster head
election, it is necessary to determine which nodes are eligible to compete
for the cluster head role. Two points need to be considered: (1) Due to
the limited energy of mobile nodes, multi-link data transmission cannot
be sustained for a long time. (2) It is impossible for all nodes to belong to
the same cluster indefinitely.

To address these points, this paper proposes methods to solve these
issues. The algorithm introduced here enhances the stability and
longevity of Mobile Crowd-Sensing (MCS) networks by innovating the
method for cluster head election. It considers not only the residual en-
ergy of potential cluster heads but also incorporates their relative ve-
locity and duration within the cluster, optimizing both energy efficiency
and the network’s dynamic adaptability.

Additionally, the proposed cluster group member selection meth-
odology addresses the limitations of traditional clustering protocols by
dynamically adjusting the cluster radius based on node density and
proximity to the cloud server. This method effectively manages data
aggregation and minimizes network transmission energy, paving the
way for more sustainable MCS network operations.

MCS background and related work

Background on MCS

The deployment of a Mobile Crowd-Sensing network mainly relies on
individuals or mobile devices for carrying, so the equipment deployment
in the presence of a large number of mobile facilities in the city will
greatly save cost and time. In wireless communication between network
nodes, the opportunistic forwarding mode of "storage-carriage-

forwarding" [14] can effectively improve the data transmission effect
and enhance the cooperation ability between nodes. As shown in Fig. 1,
the typical Mobile Crowd-Sensing network structure is mainly composed
of three components [15–17], which are: 1. Initiator of perception task,
2. Task distribution system, 3. Service node.

Due to the limited sensing ability of smart devices, the selfishness of
human beings and the limited performance of devices also determine
that people will not install too many sensors in mobile terminals to in-
crease the energy supply pressure of devices and consume a lot of energy
in the process of data collection and transmission. Therefore, in future
development, the network cost will inevitably face the challenge of fast
energy consumption and a short life cycle. The control of data percep-
tion cost mainly lies in the selection of users, while the mitigation of
excessive energy consumption lies in the cooperative perception among
participants. Both rely on proper task transfer and data aggregation.
Literature [18] predicts user calls and movements, enabling users to
report data in appropriate actual and network environments to reduce
traffic consumption and power consumption. Literature [19] USES static
users to assist information transmission to reduce energy consumption
based on the Archimedes curve.

Network clustering protocol analysis

Traditional WSNs are composed of static nodes and controllable
mobile nodes, which can provide reliable sensing coverage services. To
expand its coverage and shorten the transmission distance of nodes, the
clustering mechanism divides the whole network into three connected
areas, and the node information is transmitted up one level after
another. Most of the time, the member nodes shut down the communi-
cation module, and the cluster head contact center server is responsible
for long-distance information transmission and routing forwarding. This
improves communication coverage in the area while saving network
energy and reducing network traffic.

LEACH routing protocol
LEACH routing protocol [20] is a classical clustering protocol for

wireless sensor networks. It uses a "round" to randomly select cluster
head nodes. When the random number generated by a node is less than
the threshold, it is elected as a cluster head and broadcast to the entire
network. Nodes within this radius are defined as affiliated nodes. This
method achieves equal opportunities to serve as cluster heads for all
nodes, which can balance the overall energy of the network.

Fig. 1. Mobile crowd-sensing structure diagram.
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The duration of the LEACH protocol in cluster construction is far less
than that of a stable transmission node and cyclic random cluster head
election mechanism, which greatly saves the energy consumption of the
network. However, the LEACH protocol has many shortcomings.
Therefore, based on the LEACH protocol, researchers improved it and
gave rise to similar clustering protocols such as LEACH-C [21] and
LEACH-M [22]. Each sensor node in the LEACH-C protocol includes its
location and residual energy in the information it sends to the base
station. The base station makes statistics on the collected data and ob-
tains the average energy of the current network nodes. The nodes with
higher than the average energy participate in clust-head election, and
determine the number of clust-head according to the network environ-
ment. Then, the simulated annealing algorithm is used to find the
network node with the best position as the cluster head.

LEACH-M adds a data response mechanism based on LEACH to
realize the support of node mobility. In the stable working stage, the
nodes in the cluster will move out of the signal coverage of the cluster
head. For this situation, the solution adopted by the LEACH-M protocol
is shown in Fig. 2. If the node cannot receive the request sent by the
cluster head in the first designated time slot and does not receive the
data request sent by the cluster head in the next time slot, it determines
that it has moved out of the cluster and will send a message to other
cluster head nodes. Broadcast and apply to join the cluster.

DEEC routing protocol
DEEC algorithm [14,23] is an efficient and efficient distributed

clustering routing protocol suitable for multi-stage energy. The main
principle is to use the ratio of the current residual energy to the average
energy of the whole network to realize the election of cluster heads, the
energy balance, and the improvement of the whole network life cycle.
Once the cluster head is determined, it will start to broadcast its ID in-
formation to the surrounding and select the nearest node to the cluster
head to join the cluster and become a member of the cluster, thus
forming a cluster network.

Advanced and optimized WSN clustering techniques
In recent advancements in Wireless Sensor Networks (WSNs), re-

searchers have shifted focus towards more sophisticated and adaptable
strategies to address the limitations of traditional protocols such as
LEACH and DEEC. Unlike LEACH, which primarily relies on randomized

cluster head rotations, and DEEC, which focuses on energy efficiency
through a simple energy ratio mechanism, the latest studies incorporate
dynamic algorithms, strategic deployment, and innovative optimization
techniques. These contemporary approaches aim to enhance network
performance, improve security measures, and optimize resource man-
agement in increasingly complex network environments.

Researchers in [24] developed a dynamic fuzzy-based clustering
protocol tailored for cognitive radio wireless sensor networks
(CR-WSNs). In [25], a novel approach using meta-heuristic algorithms
was introduced to enhance clustering and routing in IoT-based wireless
sensor networks. The study by [26] introduces a multi-attribute deci-
sion-making framework for optimal deployment of sensor nodes in
WSNs. In [27], researchers explored optimized clustering and load
balancing in wireless sensor networks using a multi-attribute deci-
sion-making approach. The research in [28] proposes a strategic node
placement method that utilizes partition-based techniques to improve
communication efficiency in WSNs. In [29], the paper proposes an
enhanced whale optimization algorithm for node localization in wireless
sensor networks, focusing on metrics like localization error rate and
convergence rate. The study in [30] discusses the application of a
simplified, energy-efficient blockchain implementation for cognitive
wireless communication networks. In [31], researchers propose a
fuzzy-based clustering algorithm that aims to enhance node coverage
and load balancing in Wireless Sensor Networks. This method integrates
multiple conflicting factors, optimizing network lifetime and ensuring
balanced energy consumption among nodes through a fuzzy logic
approach. The paper in [32] introduces a matrix method to improve the
efficiency of non-dominated sorting and population selection in
multi-objective optimization problems. This approach reduces compu-
tational complexity and accelerates the convergence process, offering a
practical alternative to traditional evolutionary algorithms. Researchers
in [33] developed an opportunistic energy-efficient dynamic
self-configuration routing algorithm for IoT applications using WSNs.
This novel algorithm dynamically configures clusters based on nodes’
residual energy and mobility, enhancing key performance metrics such
as throughput, delay, and packet delivery ratio. Researchers in [34]
enhanced the fuzzy logic zone stable election protocol for cluster head
election, combined with multipath routing to enhance wireless sensor
network efficiency. This approach outperforms traditional protocols like
LEACH by optimizing cluster head selection and ensuring more reliable
data transmission, reducing energy consumption, delay, and packet loss
significantly.

Disadvantages of clustering protocols
Although the development of routing clustering protocols in wireless

sensor networks has been gradually mature, each clustering algorithm
has some shortcomings in the application environment. It needs to be
improved as follows:

(1) Unreasonable cluster head election. Most algorithms in clustering
protocol adopt dynamic random or comparison thresholds to
select cluster heads. The random method may cause premature
death of cluster heads due to too low energy. The disadvantage of
the threshold is that if the data that does not meet the threshold
standard cannot be transmitted, the sink node may be unable to
obtain any data information.

(2) High additional energy consumption. The cluster radius division
of most clustering protocols depends on the communication
radius of the cluster-head node. If the density of the cluster-head
node is relatively low and the nodes are clustered around the
cluster-head, the excessive transmission radius will consume the
energy of the cluster-head too quickly and seriously waste the
limited energy resources in the wireless sensor network.

Fig. 2. LEACH-M protocol node interaction.
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Based on fitness and node density clustering mechanism in MCS

Data perception, monitoring, and fusion are intricate processes
within the MCS (Mobile Crowd-Sensing) network, especially in inter-
mittently connected network environments where an opportunistic
forwarding mechanism is necessary to transmit perceptual data. Trans-
mitting large volumes of raw perceptual data can lead to significant
transmission delays, which may hinder the incentive mechanisms aimed
at recruiting perceptual users. Moreover, processing such extensive data
directly within the MCS network consumes considerable energy and
network resources, placing undue stress on servers.

As the capabilities of intelligent terminals improve markedly, there is
a shift towards networks that are low in both transmission energy con-
sumption and computing costs, aligning with the energy-efficient
characteristics of clustering algorithms. This transition supports the
cost optimization in Crowd-Sensing networks. Furthermore, long-
distance transmissions between the cluster head and the cloud server
are more resource-efficient and effective at reducing network congestion
than transmissions from each individual node to the server. As illus-
trated in Fig. 3, the clustering transmission mode significantly reduces
the number of feedback links within the sensing region compared to
traditional transmission modes.

In our algorithm, we define assumptions to support the correct
working of the MCLEC algorithm:

• Sensor nodes move irregularly.
• Sensor nodes can obtain their current position.
• All nodes have the same data processing and communication
capabilities.

• The energy of the sensor is limited, but if the energy reaches a certain
value, the node will die, that is, it will no longer sense data.

• Sensor nodes use the same transmit power and range.
• Cluster head nodes actively and periodically send data to the base
station.

• Cloud servers are always in a static state.

Initiation of the process commences with the calculation of node
density, denoted as ρ(Ni), which serves as a foundational parameter for
determining the dynamic clustering radius R. This radius is pivotal in
facilitating the election of cluster heads, ensuring that only the most
suitably positioned nodes, in terms of connectivity and energy resources,
are selected for this critical role.

Following the election of the cluster head, the algorithm evaluates
the necessity for re-election of cluster heads through a decision-making
node, which addresses potential shifts in node distribution or alterations

in energy levels that may compromise data transmission efficiency or
network stability. As shown as the Fig. 4.

In the stage of cluster perception anddata transmission, cluster division
and cluster head election are completed. When the service node is in these
two phases, the state is mainly divided into discovery, work, and sleep.
When the node is in the discovery stage, it first perceives the surrounding
data, elects the cluster head, and the non-cluster-head node chooses its
cluster group, issues a request to the cluster head, and stops the data
transmission.When the data collection and election of the cluster head are
completed, the nodewill switch to the working state. At this time, the data
collectionwill be stoppedand thedata transmission canbe carriedout. The
service node will send the collected data to the cluster head for simple
processing. When the service node transmits all its perceived data, it
transitions to a sleep state, stops sensing and transmitting tasks, and re-
duces energy consumption. See Fig. 5. Under the same perceptive task,
when the task forwhich the service node is responsible is completed, it will
change from a working state to a sleeping state, and repeat the transition
process of the above state until the new perceptive task starts.

Cluster group member selection

In traditional clustering protocol, the size of the cluster range is
determined by the communication range of the cluster-head node. Due
to the randomness of node distribution and the inaccessibility of its
sensing range, the traditional clustering method cannot achieve a good
effect in the mobile swarm intelligent perception network. Considering
the characteristics of the MCS such as large scale, strong mobility, and
long transmission distance, there are higher requirements for selecting
cluster member nodes when dividing clusters. Therefore, a method is
proposed to specify cluster radius for the structure of the group
perceptive network, R is the cluster radius for the node under consid-
eration, which determines the communication scope within the mobile
crowd-sensing network. As shown in formula (1):

R = ρ(Ni)

(

1 − c
dmax − dns

dmax − dmin

)

R0 (1)

where, ρ(Ni) is the density of nodes within one hop of node i, reflecting
the local node population density which influences the cluster radius.
dmax is the maximum distance observed between any perceived node and
the cloud server across the entire network, representing the farthest
node reach. dmin is the minimum distance observed between any
perceived node and the cloud server across the entire network, indi-

Fig. 3. A comparison of the two data transmission modes. (a) Data transmission
by traditional group perceptive network. (b) Data transmission by cluster group
perceptive network.

Fig. 4. Flowchart of FITNESS AND NODE DENSITY CLUSTERING MECHANISM
IN MCS.
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cating the nearest node position. And dns is the actual distance between
node i and the cloud server, used to adjust the influence of node position
on cluster sizing. The communication radius is jointly determined by
ρ(Ni), c, and R0. c is the parameter that modifies the impact of the dif-
ference between dmax and dns. R0 is predefined maximum communica-
tion range of a network node, serving as a baseline for the maximum
potential cluster radius.

The cluster radius R is dynamically adjusted based on the relative
position of node i to the cloud server, modulated by the density of nearby
nodes. This mechanism ensures that nodes farther from the cloud server
can have a larger cluster radius, facilitating efficient data aggregation
and transmission within areas of higher node density. Conversely, nodes
closer to the server have a smaller cluster radius, optimizing network
resources and reducing congestion. This adaptive mechanism is crucial
for managing the challenges of large-scale, highly mobile, and long-
distance transmissions in crowd-sensing networks.

The cluster head is responsible for the sensing work in each sensing
area. The cluster head election method is described in the following
research. The divided perception network is shown in Fig. 6, and its
clustering method is centered on the cluster head. The topology of the
entire cluster changes with the movement of the cluster head node and
the change of the cluster head radius.

Cluster head election method

The selection of cluster heads is crucial for the stability and longevity
of the entire network. Traditional methods of selecting cluster heads
often involve a degree of randomness, leading to significant fluctuations
in the number of cluster heads during elections and failing to consider
the coverage features crucial for Mobile Crowd-Sensing opportunities.
Merely incorporating a conventional clustering algorithm into the node
perception phase of the Mobile Crowd-Sensing network structure does
not systematically or standardly process perception information.
Instead, it increases network energy consumption and shortens the
network’s life cycle.

To enhance the network’s self-adaptability, the election of cluster
heads should not solely focus on energy consumption but also consider
speed and movement direction. Both the sensing nodes and the elected
cluster heads are mobile, displaying relative speeds during the election
process.

The following issues can arise with the use of random cluster head
elections:

• If a common sensing node at the edge of the cluster is elected as the
cluster head, it may move out of the cluster, necessitating a re-
election for the entire cluster and resulting in excessive energy
consumption.

• If a node moves too rapidly, it will remain within the cluster for only
a short time after being elected as the cluster head, which can shorten
the overall life cycle of the cluster and negatively impact subsequent
data fusion and forwarding.

• Electing a sensing node with low energy as the cluster head can lead
to its rapid depletion and premature death of the cluster.

Based on an analysis of these issues and considering the movement
patterns of the sensed nodes and cluster heads, the movement directions
of the four nodes as depicted in Fig. 7 were determined.

The primary focus of this algorithm is to optimize the selection of
cluster heads by considering both the residual energy of the nodes and
their projected duration within the cluster. By selecting a node that not
only possesses the highest energy fitness but also demonstrates pro-
longed stability within the cluster, the algorithm enhances the longevity
and coordination capabilities of the network’s nodes. This approach
helps prevent the collapse of the cluster due to the premature depletion
of the cluster head’s energy, thus significantly extending the network’s
overall lifecycle, as illustrated in formula (2). This strategy ensures that
the chosen cluster head can maintain its role for an extended period,
thereby stabilizing the network’s structure and functionality.

f = ω1 × E+ω2

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
X2 + R2 − 2XRcosβ

√

F(V)

)

(2)

E = Einit − n
(
Eelect + Efsd2 +Empd4

)
− mEdafu (3)

Fig. 5. Node state transition diagram.

Fig. 6. Crowd sensing area division. Fig. 7. Node movement direction.
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X =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − xc)
2
− (yi − yc)

2
√

(4)

β = cos− 1

⎛

⎜
⎝

(xi − xc)xc + (yi − yc)yc
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − xc)
2
− (yi − yc)

2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2c + y2c
√

⎞

⎟
⎠ (5)

F(V) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(vix − vhx)2 +
(
viy − vhy

)2
√

(6)

Where, Einit is Initial energy of the node, n is the total bits transmitted by
the node. d is transmission distance in meters (m). m is the number of
data aggregation operations performed, Eelect is energy per bit for elec-
tronic processing, Efs is the energy per bit per square meter for free-space
transmission, Emp is the energy per bit per cubic meter for multipath data
transmission, Edafu is the energy per data aggregation operation. X is the
distance to the previous cluster head, xi, yi are the coordinates of the
node, xc, yc are the coordinates of the previous cluster head. β is the
angle between X and R. F(V) is the relative velocity function, vix, viy are
the velocity components of the node, and vhx, vhy are the velocity com-
ponents of the cluster head. ω1,ω2 are weighting factors for energy and
distance-velocity terms, ω1 = 0.6,ω2 = 0.4. This mathematical model
provides a framework for evaluating the suitability of nodes as cluster
heads by considering not only their energy capacity but also their po-
sition and mobility relative to the network structure.

Fig. 8 illustrates the cluster head election process. In the described
mobile sensing network, sensing nodes are randomly distributed across

the network topology, analogous to starswithin a black hole optimization
algorithm framework. Each node (or "star") is assigned an adaptation
value, denoted by f . This value quantifies each node’s suitability to act as
a cluster head, based on factors like energy, proximity, and stability.

CH =

{
Nodei, if fi > fj for all j ∕= i

Nodej, if fi ≤ fj and no other fk > fj
(7)

Where, Nodei is the any node in the network where i is its index., Nodej
is the previous cluster head, where j represents its index. The process
involves evaluating whether any node

i in the network has an adaptation value fi that surpasses that of the
previous cluster head fj. If such a node exists, it is selected as the new
cluster head. Otherwise, the previous cluster head j retains its position.
This method ensures that the new cluster head is at least as capable as
the previous one, if not more so, thereby potentially enhancing network
stability and efficiency.

This refined model and description clearly define how the transition
of leadership is managed within the network, ensuring continuity and
stability in cluster head roles.

Algorithm description

Here is the refined and corrected pseudo-code for the clustering al-
gorithm used in mobile group perception. This algorithm involves
selecting cluster heads based on their fitness values for optimization and
broadcasting this information to cluster members.

Algorithm 1. Mobile crowd-sensing network clustering algorithm.

Fig. 8. The fitness is optimal at t1. (a) The fitness is optimal at t2. (b) Optimal
fitness at time t2.
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Simulation result

The simulation scene

This study introduces an advanced clustering algorithm designed for
mobile crowd-sensing networks. It highlights the dynamic adjustment of
cluster radii based on node density and proximity to cloud servers. The
algorithm also enhances the election process for cluster heads by
considering node stability and energy levels, aiming to extend the net-
work’s lifecycle and improve resource management.

The feasibility of the algorithm is demonstrated through simulations
that compare it with established traditional clustering protocols such as
LEACH, LEACH-C, SEP, DEEC, and the mobile-specific LEACH-M. These
simulations evaluate various metrics, including energy consumption,
node longevity, data transmission, and network balancing. The simu-
lation parameters are detailed in Table 1.

The simulation experiments primarily focus on the impact of various
factors, including node density, speed, distance from the cluster head,
energy, and distance from the base station on network lifespan and node
energy consumption. The comparison between the proposed algorithm
and traditional clustering algorithms is conducted through these simu-
lation experiments.

Comparison of classic clustering algorithms

Lifetime experiment
This section presents a comparative analysis of network lifecycle

experiment results. The lifecycle of a network is a critical factor that
influences its performance. Fig. 9 illustrates the comparison between the

MCLEC algorithm and a classical clustering algorithm in terms of node
mortality over the same period. A node is defined as "dead" when its
energy is depleted, indicated by a value of 0, rendering it inactive.

In the initial phase of the mobile group perceptron network, it is
essential to cluster nodes based on their energy levels, while node
mobility remains uncontrollable. Consequently, all nodes must broad-
cast to ascertain the number of nodes within their communication
radius. Over time, the mortality rate for nodes in all routing algorithms
doubles due to the substantial energy consumed in communication, data
transmission, and cluster head selection.

After x = 500, the MCLEC algorithm demonstrates a lower rate of
node deaths compared to the classical clustering protocol at the same
point in time. This improvement is due to the algorithm’s cluster head
election mechanism, which considers various factors such as node en-
ergy and movement speed, significantly enhancing node survival
compared to the LEACH-M algorithm for mobile sensors. However, as
runtime exceeds 1000, the growth curve of the MCLEC algorithm
steepens, indicating an accelerated rate of node mortality.

Fig. 10 displays a contrast diagram showing the number of packets
nodes send to the gathering node. As illustrated, while packet counts in
other networks have ceased to grow, those in the MCLEC network
continue to increase. This indicates that the MCLEC network has a
longer lifecycle and sends packets over a longer duration compared to
other algorithms, thus transmitting a greater number of packets to the
gathering node than other clustering algorithms.

Fig. 11 presents a comparison of energy consumption among
different clustering algorithms. Although MCLEC initially consumes
energy more rapidly, it proves more efficient in terms of energy con-
sumption during the middle and late stages of its operation. This
improvement is attributed to the MCLEC algorithm’s ability to shorten
data transmission distances, maintain clustering ranges within reason-
able limits, and minimize the extra energy consumption typically caused
by large-scale broadcasting. Overall, the energy efficiency of the MCLEC
is superior to that of other clustering algorithms.

In Fig. 12 illustrates three scenarios: the time at which the first node
dies, when 10 % of the nodes are dead, and when all nodes die. The
experimental data suggest that MCLEC has a longer lifecycle than other
traditional clustering algorithms. The time of the first node’s death is
critical as it sets the precedent for network stability. Subsequent node
deaths are spread over time, ultimately defining the lifecycle of the
entire network. The experimental results indicate that MCLEC not only
enhances network stability but also extends the overall lifecycle
compared to other classic clustering algorithms.

Table 1
The simulation parameters for the traditional clustering.

Parameter
name

Parameter
value

Explanation

Simulation
Area

200 m ×

200 m
The physical area covered by the simulation.

Number of
Nodes 200 The total number of nodes in the network.

Einit 0.5 J Initial energy of nodes.
Eelect 50 nJ/bit Energy consumed for data transmission per bit.

Efs 50 nJ/bit/m2 Energy consumed for free-space data
transmission per bit per square meter.

Emp
0.0013 pJ/
bit/m⁴

Energy consumed for multi-path data
transmission per bit per cubic meter.

Edafu 5 nJ Energy consumed for data aggregation.

Fig. 9. Comparison of the number of death nodes.

Fig. 10. Packet to sink node comparison chart.
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Transmission experiment
The number of nodes within each cluster significantly influences the

network’s clustering structure and is crucial for assessing whether the
structure is reasonable. The node count impacts both the real-time
performance of data transmission and the energy consumption of the
nodes. Whether employing the "storage-carriage-forwarding" commu-
nication mode in this algorithm or the "aggregation-forwarding" mode
used in traditional clustering algorithms, a one-hop transmission mode
between nodes and cluster heads is utilized. Key performance indicators
include time delay, load balancing, and routing overhead.

In the clustering algorithm, the number of nodes per cluster affects
the network’s survival time and transmission efficiency. The degree of
load balancing within a cluster is a key metric for evaluating a clustering
algorithm. Thus, a Load Balancing Factor (LBF) is introduced to assess
the performance of the clustering algorithm. The formula for LBF is
given by::

LBF =
CH num
∑CH num

i=1
(xi − x)2

where, CH_num is the number of cluster heads in the network, xi is the

number of members contained in the ith cluster, and x is the average
number of members of the cluster. Fig. 13 compares the load balancing
experiments of LEACH, LEACH-C, LEACH-M, and MCLEC. A higher LBF
value indicates a more balanced load within the cluster, signifying more
reasonable clustering. According to the experimental data, the MCLEC
algorithm shows a significantly higher load balancing value than the
other algorithms, indicating it is more efficient in energy conservation
and effectively extends the lifecycle.

As depicted in Fig. 14, a comparison of network transmission delays
reveals that MCLEC experiences relatively large fluctuations in trans-
mission delay. When the node count is low, there is a noticeable increase
in transmission delay. Experimental data show that MCLEC’s trans-
mission delay is notably better than that of LEACH and LEACH-M, and it
is gradually approaching the performance of the LEACH-C algorithm.
MCLEC adopts an "edge" concept, where the edge is not only a
geographic boundary but also involves priority processing of data before
packets reach the cloud, contributing to the variation in delay.

Routing overhead is a vital metric for evaluating the routing per-
formance of a network. Experimental data demonstrates changes in
routing costs as the number of nodes varies from 100 to 220. As shown in
Fig. 15, routing overhead increases with the number of nodes due to
higher network density, more intense competition for channel resources,
and more packet copies forwarded by nodes in the network. The data
indicate that MCLEC can effectively control routing overhead compared
to the other three algorithms, with significantly lower overhead after the
node count exceeds 140.

Comparison of advanced and optimized WSN clustering techniques

In addition to traditional classical clustering algorithms, advanced
and optimized WSN clustering algorithms have recently become a crit-
ical area of research due to their significant impact on network lifetime
and energy efficiency. The figures presented in this study offer a
comparative analysis of several advanced and optimizedWSN clustering
algorithms, specifically focusing on their residual energy percentages
over time and overall network lifetimes under various simulation con-
ditions. The algorithms analyzed in this study include E-FLZSEPFCH
[34], DFLC [35], ECPF [36], ACAWT [34], UCR [37], CHEF [38], and
Gupta’s algorithm [39]. The simulation parameters for the advanced
and optimized clustering are shown in Table 2.

Fig. 16 shows the residual energy percentages at various simulation
times for a range of novel clustering algorithms, including MCLEC, E-
FLZSEPFCH, DFLC, ECPF, ACAWT, UCR, CHEF, and Gupta. The analysis

Fig. 12. Node life cycle comparison chart.

Fig. 13. LBF comparison.Fig. 11. Energy consumption comparison chart.
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reveals that MCLEC consistently demonstrates the best energy retention
across all time points, with a relatively flat energy consumption curve,
indicating its excellent energy management capabilities. The E-
FLZSEPFCH algorithm performs particularly well in the mid-phase, with
slow energy decay, suggesting effective energy efficiency strategies
during this period. In contrast, other algorithms such as DFLC, ECPF,
ACAWT, UCR, CHEF, and Gupta show more significant energy declines
in later stages, especially Gupta and CHEF, which exhibit weaker energy
retention capabilities. These data highlight the importance of consid-
ering energy efficiency when selecting clustering algorithms.

Fig. 17 compares the lifetime metrics of the MECLEC algorithm with
other novel clustering algorithms. In the performance comparison be-
tween MECLEC and E-FLZSEPFCH, although E-FLZSEPFCH shows better
stability and slower performance degradation after 400-time units,
overall, the MECLEC algorithm still outperforms E-FLZSEPFCH as well
as other algorithms throughout all the simulated time periods. The
graph emphasizes the potential advantages of the MECLEC algorithm
when designing WSN systems for long-term deployment. Despite the
durability shown by E-FLZSEPFCH in the later stages, the superior
overall performance of MECLEC indicates that it can maintain a higher
performance level over the long run. Particularly in the early stages of
the network, MECLEC’s high efficiency can significantly extend the
effective operational time of the network, which is especially important
for applications that require high efficiency from the start.

Conclusion

This study introduces a novel clustering methodology to mobile
crowd-sensing networks, achieving balanced energy consumption

Fig. 14. Average delay comparison.

Fig. 15. Routing overhead comparison.

Table 2
The simulation parameters for the advanced and optimized clustering.

Parameter name Parameter
value

Explanation

Simulation Area 1050 × 1100 The physical area covered by the
simulation.

Number of Nodes 1550 The total number of nodes in the network.
Einit 3 J Initial energy of nodes.

Eelect 50 nJ/bit
Energy consumed for data transmission per
bit.

Efs 10 pJ/bit/m2 Energy consumed for free-space data
transmission per bit per square meter.

Emp
0.0013 pJ/
bit/m⁴

Energy consumed for multi-path data
transmission per bit per cubic meter.

Edafu 5 nJ Energy consumed for data aggregation.
Data packet size
(bytes) 150 bytes

Bytes forming a data packet for
transmission.

Control packet size
(bytes)

35 bytes
Bytes in packet for network control
information.

Fig. 16. Residual energy percentages by simulation time and advanced and
optimized WSN clustering algorithms.

Fig. 17. Comparison of advanced and optimized WSN clustering algorithms
lifetimes under different simulation times.
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among the sensing nodes. By precisely defining the cluster radius and
thoroughly evaluating various determinants that influence cluster head
selection, a new clustering algorithm predicated on adaptability and
node density has been formulated. This algorithm substantially extends
the network’s lifecycle and fortifies its stability. Comparative analysis
with leading-edge clustering algorithms indicates that while this
approach significantly diminishes energy consumption and ameliorates
transmission delays relative to conventional clustering networks, it also
exhibits inherent limitations that necessitate further enhancements for
robust, large-scale deployment. Furthermore, this research presupposes
an intrinsic trust among nodes, thereby omitting an analysis of privacy
and security concerns. Future endeavors will focus on scaling the
network, augmenting its durability, and prioritizing the security and
privacy of users.

Abbreviations

MCS: Mobile Crowd Sensing
IoT: Internet of Things
MCLEC: Mobile Crowd-sensing Low Energy Clustering Algorithm
LEACH: Low-Energy Adaptive Clustering Hierarchy
LEACH-C: Low-Energy Adaptive Clustering Hierarchy Centralized
LEACH-M: Low-Energy Adaptive Clustering Hierarchy for mobile
LBF: Load-Balanced Fuzzy
DEEC: Distributed Energy-Efficient Clustering
SEP: Stable Election Protocol
R0: Predefined maximum communication range of a node
ρ(Ni): Density of nodes within one hop of node i
dmax: Maximum distance between any node and the cloud server

across the network
dmin: Minimum distance observed between any perceived node and

the cloud server across the entire network
dns: Actual distance between node i and the cloud server
c: Adjustment parameter affecting the influence of distance on

cluster radius
n: Total bits transmitted by the node
d: Transmission distance in meters
m: Number of data aggregation operations performed
E: Residual energy of a node
Einit: Initial energy of the node
Efs: Energy per bit per square meter for free-space transmission
Eelect: Energy consumed for data transmission per bit
Emp: Energy per bit per cubic meter for multipath data transmission.
Edafu: Energy per data aggregation operation
xi, yi: Coordinates of the node
xc, yc: Coordinates of the previous cluster head
X: Distance to the previous cluster head
R: Cluster radius
β: Angle between the position vector to the previous cluster head and

the relative movement direction
F(V): Relative velocity function
vi, vi: Velocity components of the node
vhx, vhy: Velocity components of the cluster head
ω1, ω2: Weighting factors for energy and distance-velocity terms.
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