ИНФОРМАЦИОННЫЕ РАДИОСИСТЕМЫ И РАДИОТЕХНОЛОГИИ **2024**»

Открытая республиканская научно-практическая интернет-конференция, 21-22 ноября 2024 г., Минск, Республика Беларусь

УДК 621.396.96

АНАЛИЗ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ОТРАЖЕННОГО СИГНАЛА В АКТИВНЫХ МНОГОПОЗИЦИОННЫХ РЛС

ХЕЙН СО ХТЭТ

Белорусский государственный университет информатики и радиоэлектроники (г. Минск, Республика Беларусь)

E-mail: heinsoehtet02@gmail.com

Научный руководитель: Бойкачёв П.В. – канд. техн. наук, доцент, профессор факультета повышения квалификации и переподготовки института информационных технологий БГУИР

Аннотация. На основе анализа математической модели отраженного сигнала в активных многопозиционных РЛС показаны факторы, влияющие на результат совместной когерентной обработки сигналов при кооперативном приеме.

Abstract. Based on the analysis of the mathematical model of the reflected signal in active multi-position radars, the factors influencing the result of joint coherent signal processing during cooperative reception are shown.

Ключевые слова: многопозиционные РЛС, совместная когерентная обработка сигналов

Введение

В последние десятилетия активно развивается такое направление в радиолокации как многопозиционные радиолокационные системы (МП РЛС). Такие системы включают несколько разнесенных в пространстве передающих, приемных или приемопередающих позиций, в которых получаемая ими информация о целях обрабатывается совместно [1, 2] (рисунок 1).

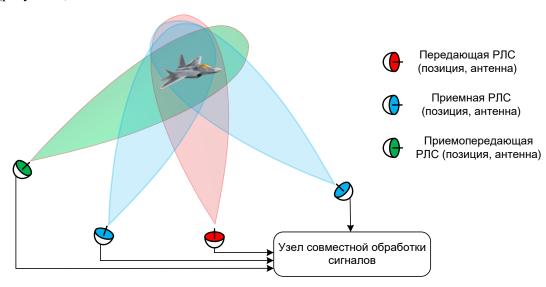


Рис. 1. К определению многопозиционных РЛС

Многопозиционные РЛС обладают рядом преимуществ в сравнении с классическими однопозиционными РЛС. При этом следует отметить, что все преимущества МП РЛС в полной мере могут быть реализованы только при когерентной совместной обработке сигналов от разных позиций, также именуемой кооперативным приемом сигналов на радиочастоте.

ИНФОРМАЦИОННЫЕ РАДИОСИСТЕМЫ И РАДИОТЕХНОЛОГИИ **2024**»

Открытая республиканская научно-практическая интернет-конференция, 21-22 ноября 2024 г., Минск, Республика Беларусь

Однако даже в однопозиционной РЛС когерентная обработка принятых сигналов сопряжена с рядом теоретических и практических проблем, а в МП РЛС таких проблемных вопросов еще больше.

Таким образом, выявление и анализ проблемных вопросов совместной когерентной обработки сигналов в активных многопозиционных РЛС является актуальной задачей. Решить данную задачу целесообразно на основе анализа математической модели отраженного сигнала (ОС) в активных многопозиционных РЛС.

Основная часть

Отраженный сигнал в виде ограниченной последовательности из $N_{\mathsf{ИМП}}$ импульсов, излученных k -ой передающей позицией (k=1...K, где K — число передающих позиций) и принятых в произвольной I -ой приемной позиций (I=1...L, где L — число приемных позиций), можно записать в следующем виде [1,3,4]:

$$\dot{m}_{k,l}(t) = \sum_{n=0}^{N_{\text{NM}\Pi}-1} \dot{M}_{k,l}(nT_{\Pi}) \dot{U}_{k}[t - t_{r_{k,l}}(nT_{\Pi}) - nT_{\Pi}] e^{j\{2\pi f_{0}[t - t_{r_{k,l}}(nT_{\Pi}) - nT_{\Pi}] + \phi_{c_{k,l}}\}},$$
(1)

где $\dot{M}_{k,l}(nT_\Pi) = E_{k,l}(nT_\Pi) \exp\{j\xi_{k,l}(nT_\Pi)\}$ – комплексная огибающая ОС со случайной амплитудой $E_{k,l}$ и начальной фазой $\xi_{k,l}$ в моменты времени кратные периоду повторения T_Π . Значения $\dot{M}_{k,l}(nT_\Pi)$ определяются степенью пространственной и временной когерентности отраженного сигнала [1];

 $\dot{U}_k[t]$ — комплексный закон модуляции зондирующего сигнала, излученного k -ой передающей позицией (сигналы с разных передающих позиций должны быть квазиортогональными [4]);

 $t_{\varGamma_{k,l}}(n\varGamma_{\Pi})$ — время запаздывания n -го отраженного импульса, излученного k -ой передающей и принятого в l -ой приемной позицией с учетом движения цели;

 f_0 — частота несущего колебания;

 $\phi_{C_{k,l}}$ — составляющая начальной фазы сигнала, обусловленная искажениями при излучении и приеме сигнала на позициях (фазовые искажения сигнала в тракте, колебания фазового центра антенн и т.п.).

Преобразовав сигнал (1) с учетом перемножения с опорным сигналом, переносом на промежуточную частоту $f_{\Pi \Psi}$ и стробирования, модель ОС примет вид [3]:

$$\dot{m}_{k,l}(t) = \dot{M}_{k,l}(nT_{\Pi})\dot{U}_{k}[t - t_{r_{k,l}}(nT_{\Pi}) - nT_{\Pi}] \times \\ \times \exp\{j[2\pi f_{\Pi q}t - 2\pi f_{0}(nT_{\Pi} + t_{r_{k,l}}) + 2\pi F_{\Pi C_{k,l}}nT_{\Pi} + \varphi_{C_{k,l}}]\}.$$
(2)

Из математической модели (2) видно, что для совместной когерентной обработки сигналов, принятых разными позициями необходимо выполнение ряда условий [3].

Во-первых, сигналы, принятые в разных позициях, должны быть когерентными по пространству [1, 3, 5]. Выполнение данного условия определяется известным в [1] соотношением эффективной базы МП РЛС, протяженности цели в картинной плоскости, длиной волны и расстоянием до цели.

Во-вторых, синфазность источников опорных колебаний, а также фазовые искажения при излучении и приеме сигналов не должны превышать допустимых значений [3, 6], что достигается обеспечением пространственной когерентности аппаратуры в разных позициях.

В-третьих, необходима компенсация межпозиционных разностей фаз, пропорциональных временам запаздывания ОС в разных позициях [3, 7].

ИНФОРМАЦИОННЫЕ РАДИОСИСТЕМЫ И РАДИОТЕХНОЛОГИИ **2024**»

Открытая республиканская научно-практическая интернет-конференция, 21-22 ноября 2024 г., Минск, Республика Беларусь

В-четвертых, необходима компенсация разностей фаз обусловленных отличиями частот Доплера сигналов, принятых разными позициями [3, 8].

Следует отметить, что первых два условия достаточно широко освещены в литературе [1, 2, 5, 6] в отличие от третьего и четвертого, которые требуют проведения дополнительных исследований.

Заключение

Анализ математической модели отраженного сигнала в активной многопозиционной РЛС позволил выявить четыре основных фактора, влияющих на результат совместной когерентной обротки принятых сигналов: необходимость выполнения условия пространственной когерентности отраженных сигналов; необходимость обеспечения пространственной когерентности аппаратуры в разных позициях; необходимость компенсации разностей фаз, обусловленных разностью хода отраженных сигналов; необходимость учета разностей фаз, обусловленных отличиями частот Доплера отраженных сигналов.

Список использованных источников

- 1. Черняк, В. С. Многопозиционная радиолокация / В. С. Черняк. М. : Радио и связь, 1993.-416 с.
 - 2. Теоретические основы радиолокации / В. Б. Алмазов [и др.]. Харьков : ХВУ, 1996. 465 с.
- 3. Оргиш, П.И. Анализ некоторых проблемных вопросов когерентного объединения сигналов в многопозиционных РЛС / П.И. Оргиш // Материалы Респ. науч.-практ. сем. кафедры автоматики, радиолокации и приемо-передающих устр. учрежд. образов. «Воен. акад. Респ. Беларусь» «Актуальные вопросы развития систем автоматики, радиолокации и приемо-передающих устройств», Минск, 28 ноября 2023 г / Воен. акад. Респ. Беларусь; отв. за выпуск Гуцев Р.А. Минск, 2024. С. 48 51.
- 4. Оргиш, П.И. Синтез устройства пространственно-временной обработки ограниченной последовательности квазиортогональных сигналов в малобазовой многопозиционной РЛС / П.И. Оргиш // Вестник ВАРБ. 2023. №4(81). С. 58 90.
- 5. Охрименко, А. Е. Пространственно-временное обеспечение многопозиционных радиолокационных систем / А.Е. Охрименко [и др.] // Вестник ВАРБ. − 2008. № 3. С. 29–38.
- 6. Крючков, И. В. Синхронизация подвижных модулей распределенных радиолокационных комплексов / И. В. Крючков, А. А. Филатов // Вестник МГТУ им. Н.Э. Баумана. Сер. «Приборостроение». 2012, Специальный выпуск. С. 45-52.
- 7. Оргиш, П.И. Оценка влияния положения цели в разрешаемом объеме на результат совместной обработки сигналов в многопозиционных РЛС / П.И. Оргиш // Актуальные вопросы развития систем автоматики, радиолокации и приемо-передающих устройств: Материалы Респ. науч.-практ. сем. кафедры автоматики, радиолокации и приемо-передающих устр. учрежд. образов. «Воен. акад. Респ. Беларусь», Минск, 30 ноября 2022 г. / Воен. акад. Респ. Беларусь ; отв. за выпуск Р.А. Гуцев. Минск, 2023. С. 32 34.
- 8. Оргиш, П.И. Методика расчета числа рассовмещенных по частоте Доплера каналов обработки отраженных сигналов при их когерентном объединении в многопозиционной РЛС / П.И. Оргиш // Вестник ВАРБ. -2023. -№4(81). С. 46-57.