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Abstract. This paper presents a multi-branch convolutional neural network designed for glaucoma diagnosis using 
optical coherence tomography biomarkers and synthetic image simulations. The network includes six branches, 
each targeting key anatomical features. Trained on a synthetic dataset, the model achieved a validation accuracy 
of 94.2 % and a training loss of 0.162, demonstrating effectiveness in distinguishing between different glaucoma 
types. The results also highlight the potential for further accuracy improvement, particularly in reducing classifi-
cation errors between closely related conditions.
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АРХИТЕКТУРА МНОГОВЕТВЕВОЙ СВЕРТОЧНОЙ НЕЙРОННОЙ СЕТИ 
ДЛЯ ДИАГНОСТИКИ ГЛАУКОМЫ НА ОСНОВЕ БИОМАРКЕРОВ 

ОПТИЧЕСКОЙ КОГЕРЕНТНОЙ ТОМОГРАФИИ 
И СИМУЛЯЦИИ СИНТЕТИЧЕСКИХ ИЗОБРАЖЕНИЙ

Ф. В. УСЕНКО, А. М. ПРУДНИК

Белорусский государственный университет информатики и радиоэлектроники  
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Аннотация. В статье представлена многоветвевая сверточная нейронная сеть, разработанная для диагнос-
тики глаукомы с использованием биомаркеров оптической когерентной томографии и симуляции синте-
тических изображений. Сеть включает шесть ветвей, каждая из которых нацелена на ключевые анато-
мические особенности. Обученная на синтетическом наборе данных, модель показала точность провер-
ки 94,2 % и потери при обучении 0,162, демонстрируя эффективность в различении разных типов глауко-
мы. Результаты также подчеркивают потенциал модели для дальнейшего повышения точности, особенно 
в части уменьшения ошибок классификации между близкими состояниями.
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Introduction
Glaucoma, a leading cause of blindness globally, is denoted by various ICD codes (H40-H42) de-

pending on the type and severity [1]. This group of eye diseases is characterized by increased intraocular 
pressure (IOP), leading to optic nerve atrophy and visual impairment. Its pathogenesis involves aqueous 
humor dynamics, necessitating antihypertensive, ocular blood flow, and neuroprotective treatments [2]. 
Early and accurate diagnosis, essential for preventing irreversible vision loss, is challenged by asymp-
tomatic progression in early stages. Conventional diagnostics like tonometry and optic nerve exams 
are skill and equipment-intensive [3].

With the increasing prevalence of glaucoma, particularly in resource-limited settings, there 
is a pressing need for innovative diagnostic tools. Artificial intelligence (AI) offers promising solutions 
by automating the diagnostic process and analyzing large data sets to detect early pathological changes 
with high accuracy [4]. AI’s capabilities not only enhance multi-class classification of disease stages but 
also necessitate the creation of multi-class tools to diagnose different varieties of glaucoma, including 
open-angle, angle-closure, normal-tension, and secondary glaucoma [5].

Ultimately, the integration of AI in glaucoma diagnosis represents a significant advancement 
in the fight against blindness, combining traditional clinical practices with cutting-edge technology 
to improve patient outcomes and streamline healthcare services.

Experiment
Glaucoma diagnosis using imaging techniques focuses on several critical anatomical features 

of the eye that undergo changes due to the disease. These features are essential for accurate diagnosis 
and are visible in optical coherence tomography (OCT) images:

•	Retinal Nerve Fiber Layer (RNFL) Thickness;
•	Optic Nerve Head Cupping (Cup-to-Disc Ratio);
•	Neuroretinal Rim Thickness;
•	Juxtapapillary RNFL Thickness;
•	Optic Nerve Sheath Diameter;
•	Macular Thickness.
The thickness of the RNFL is a diagnostic marker for glaucoma, reflecting the accumulation of re-

tinal ganglion cell axons. Thinning of this layer is indicative of glaucoma progression and is assessed 
to monitor disease advancement [6].

Optic nerve head cupping is fundamental in glaucoma assessments, where an increased ratio indi-
cates potential glaucomatous damage. It is a primary marker used in screening and evaluating glaucoma 
severity [7].

The neuroretinal rim, which outlines the optic disc, tends to thin as glaucoma progresses. Evaluating 
its thickness helps in determining the extent of glaucomatous damage [8].

Measuring the RNFL thickness near the optic disc is vital for early detection of glaucoma. This area 
is among the first to show glaucomatous changes, making its assessment crucial for early intervention [9].

Variations in the diameter of the sheath that surrounds the optic nerve are related to changes in int-
racranial pressure, which is associated with glaucoma. Monitoring this diameter can help gauge the prog-
ression or stabilization of the disease [10].
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The macula’s thickness provides valuable insights, especially in glaucoma types where peripheral 
vision loss occurs. Changes in macular thickness can corroborate findings from peripapillary assess-
ments [11].

Given the complexity and variability in these features, a single analytic approach may not suffice 
to capture all the nuances necessary for an accurate diagnosis. This leads to the necessity of developing 
a multi-branch convolutional neural network (CNN). A multi-branch CNN can process and analyze each 
key feature separately, allowing for a comprehensive evaluation of the images. This method enhances 
diagnostic accuracy and ensures that subtle but clinically significant variations are accurately detected.

Accurate classification of glaucoma types – normal condition (healthy eyes with no glaucoma), 
open-angle glaucoma, angle-closure (closed-angle) glaucoma, normal-tension glaucoma, and secondary 
glaucoma – is essential for effective treatment and management. Each type has distinct characteristics: 
open-angle glaucoma is often asymptomatic and progresses slowly, making it the most common form; 
angle-closure glaucoma requires immediate intervention to prevent acute vision loss; normal-tension 
glaucoma occurs despite normal IOP levels, complicating diagnosis; and secondary glaucoma arises 
from other conditions or external factors [1, 12]).

Developing a multi-class architecture to recognize these glaucoma classes can enhance diagnostic 
accuracy, facilitating timely and tailored treatment strategies. This technological advancement not only 
supports early detection but also promotes personalized medical approaches, significantly improving 
patient outcomes across different glaucoma types [4].

The multi-branch CNN architecture employs six specialized branches, each processing 
224×224×1 grayscale OCT images targeting distinct anatomical features crucial for comprehensive 
glaucoma assessment. This design aligns with established clinical diagnostic protocols that require con-
current analysis of multiple structural parameters. 

The input resolution of 224×224×1 was selected based on multiple clinical and technical consi-
derations. Clinically, standard OCT scans typically offer detailed images at an axial resolution 
of 15–20 μm. A 224×224 px image spans an area of approximately 6×6 mm on the retina, which is ade-
quate for visualizing the entire optic disc (with a typical diameter of about 1.5 mm), ensuring pro-
per peripapillary RNFL sampling via a 3.4 mm circular scan, and assessing macular thickness over 
a 6 mm diameter area.

Regarding technical specifications, single-channel grayscale images are sufficient since OCT pro-
vides structural, rather than color, information. The 224×224 resolution strikes a balance between pre-
serving detail for fine structures (ranging from 10–20 μm), ensuring computational efficiency, and main-
taining compatibility with standard CNN architectures such as VGG and ResNet variants. This resolu-
tion offers a spatial resolution of approximately 27 μm per pixel, which surpasses the minimum clinical 
requirement of 50 μm per pixel needed to detect early glaucomatous changes [13].

The specialized branches reflect the key anatomical regions that exhibit characteristic changes in dif-
ferent glaucoma subtypes. This architecture enables simultaneous evaluation of both localized defects 
and global structural changes, essential for differentiating between primary open-angle, angle-closure, 
normal-tension, and secondary glaucoma variants.

The RNFL branch employs a convolutional architecture optimized for detecting glaucomatous 
da mage through thickness measurements. The design incorporates 2×2 kernels progressing through 
layers (32→64→128 filters) to capture RNFL changes at the scale of 10–20 μm, critical for early glau-
coma detection. This configuration aligns with established clinical thresholds: normal (90–100 μm), ear-
ly damage (70–90 μm), and advanced loss (<70 μm). The architecture’s depth with MaxPooling allows 
simultaneous analysis of localized defects and global thinning patterns, particularly in superior/inferior 
arcuate regions – key indicators of glaucomatous progression [14]. Global average pooling aggregates 
features representing sectoral analysis patterns and deviations from age-matched normative data, enab-
ling classification accuracy while maintaining clinical interpretability (Fig. 1, a).

The cup-to-disc branch employs a convolutional architecture optimized for analyzing optic disc 
morphology and cup-to-disc ratio (CDR), a critical biomarker for glaucoma progression. The design 
utilizes larger kernels (5×5→4×4→3×3) to capture structural features across multiple spatial scales. 
This configuration aligns with established clinical parameters: normal CDR (<0.5), early glaucomatous 
changes (0.5–0.7), and advanced optic nerve head cupping (>0.7). The architecture’s progressive kernel 
size reduction facilitates hierarchical feature extraction, from global disc margins to fine-scale rim pre-
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servation assessment. MaxPooling layers positioned after convolutions enable simultaneous evaluation 
of vertical and horizontal cup elongation patterns – characteristic indicators of glaucomatous progres-
sion [15]. The branch terminates with global average pooling to maintain spatial relationship integrity 
while reducing dimensionality (Fig. 1, b).

The neuroretinal rim branch employs a dual-pathway CNN architecture optimized for precise rim 
tissue analysis and ISNT (Inferior-Superior-Nasal-Temporal) rule compliance assessment. The design 
incorporates parallel processing streams: a fine-detail path with 2×2 kernels for thickness measure-
ments (200–500 μm), and a context path with dilated 3×3 convolutions for broader rim pattern analy-
sis. This configuration aligns with established clinical parameters: normal rim width (>0.3 mm), focal 
notching (<0.2 mm), and ISNT rule violations. The architecture implements an attention mechanism 
focusing on rim regions and employs skip connections to preserve fine thickness gradients [16]. Global 
average pooling maintains spatial relationships while facilitating rim sector analysis (Fig. 1, c).

The juxtapapillary RNFL branch employs a dual-pathway CNN architecture optimized for ana-
lyzing the critical 3.4 mm circular scan region around the optic disc. The design incorporates a layer 
segmentation path with 2×2 kernels for precise boundary detection (8–10 μm resolution) and a circular 
pattern path utilizing dilated convolutions for broader contextual analysis. This configuration aligns 
with established clinical parameters: normal thickness (90–108 μm), early thinning (70–89 μm), and ad-
vanced loss (<70 μm). The architecture implements feature fusion between paths to simultaneously cap-
ture localized defects and circular thickness patterns [17]. Batch normalization and MaxPooling layers 
strategically maintain spatial relationships while reducing dimensionality (Fig. 1, d).

 a b c

 d e f
Fig. 1. Network architectures of the multi-branch convolutional neural network model: 

a – RNFL thickness branch; b – cup-to-disc ratio branch; c – neuroretinal rim thickness branch;  
d – juxtapapillary RNFL branch; e – optic nerve sheath branch; f – macular thickness branch
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The optic nerve sheath diameter branch employs a dual-pathway CNN architecture optimized 
for measurement of the subarachnoid space at standardized distances (3 mm) posterior to the globe. 
The design incorporates orthogonal kernel configurations (2×5 vertical, 5×2 horizontal) for enhanced 
boundary detection sensitivity (0.1 mm precision) and measurement point localization. This confi-
guration aligns with established clinical parameters: normal diameter (5.0–5.5 mm), borderline ele-
vation (5.5–6.0 mm), and pathological distension (>6.0 mm). The architecture implements a spatial 
attention mechanism focusing on standardized measurement points while maintaining sensitivity to sur-
rounding anatomical context [18]. Multi-point analysis enables detection of gradients indicative of intra-
cranial pressure varia tions (Fig. 1, e).

The macular thickness branch employs a dual-pathway CNN architecture optimized for simulta-
neous layer segmentation and regional thickness analysis. The design incorporates parallel processing 
streams: a segmentation path with 2×2 kernels for precise layer boundary detection (8–10 μm resolu-
tion), and a regional analysis path utilizing dilated convolutions for sector-wise processing (superior, in-
ferior, nasal, temporal quadrants). This configuration aligns with established clinical parameters: normal 
central subfield thickness (260 ± 20 μm), early thinning (<240 μm), and advanced loss (<220 μm) [11]. 
The architecture implements sector-wise attention mechanisms focusing on clinically significant regions 
while preserving layer boundary information through skip connections (Fig. 1, f).

To validate and test our multi-branch CNN architecture designed for glaucoma detection, we imple-
mented a synthetic data generation pipeline that creates controlled test images with precise feature varia-
tions. This approach allows us to systematically evaluate how each specialized branch of the network 
processes and learns from specific anatomical patterns, ensuring robust feature extraction capabilities 
across different input characteristics.

From a technical implementation perspective, our synthetic data generator creates 224×224×1 gray-
scale images using NumPy arrays and mathematical modeling. While the base generation produces 
single-channel grayscale images, the visualization module applies a colormap during display to enhance 
pattern visibility and feature differentiation. This is purely for visualization purposes and doesn’t affect 
the actual network input. The generator implements specialized methods for each feature type using 
coordinate-based calculations and masked arrays.

In computer graphics terms, each pixel in our 224×224 synthetic images represents approxima-
tely 8–10 µm of actual retinal tissue depth, consistent with the axial resolution of standard clinical 
OCT scanners [19]. This proportion arises from mapping a 2×2 mm area of the retina onto a 224×224 pi-
xel grid, translating to roughly 8.9 µm per pixel. Although this sometimes makes the transitions between 
pixel intensities appear slightly pixelized, the effect accurately mirrors the inherent resolution limita-
tions of real OCT scans, ensuring that the synthetic data remains both physiologically and diagnostically 
realistic.

To generate RNFL synthetic images, the generator creates circular scan patterns with 3.4 mm dia-
meter through angular masking and coordinate-based calculations. Blood vessel shadows are added 
at [(0.8, 0.1), (2.3, 0.1), (–0.8, 0.1), (–2.3, 0.1)] radians with 0.85 intensity reduction. The implemen-
tation includes smooth transitions between different thickness regions using Gaussian filtering (σ = 2) 
and incorporates age-related variations through random scaling factors (0.9–1.0). Edge smoothing 
and texture simulation employ controlled random noise (σ = 0.05) to mimic the inherent speckle pat-
terns observed in OCT scans (Fig. 2, a).

To generate cup-to-disc synthetic images, the generator creates circular disc patterns with va-
rying sizes (1.0–2.5 mm diameter) through coordinate-based masking and concentric circles. Cup re-
gions are generated with clinically relevant cup-to-disc ratios ranging from normal (0.1–0.4) to ad-
vanced glaucoma (0.7–0.9). The implementation includes vertical elongation for glaucomatous cups 
(1.1–1.3 stretch factor) and incorporates vessel trunk deviations using angular masking (–π/6 to π/6). 
Edge smoothing uses Gaussian filtering (σ = 1) and texture simulation employs controlled random 
noise (σ = 0.05) (Fig. 2, b).

To generate neuroretinal rim synthetic images, the generator creates anatomically accurate patterns 
following the ISNT rule (Inferior > Superior > Nasal > Temporal) using precise rim area measurements 
ranging from normal (1.6–2.0 mm2) to advanced loss (0.6–0.99 mm2). The implementation produces cir-
cular patterns with sector-specific thickness variations, where the inferior rim is thickest (1.0–1.2 ratio) 
followed by superior (0.9–1.1 ratio), nasal (0.7–0.9 ratio), and temporal (0.5–0.7 ratio) sectors. For patho-
logical cases, it simulates focal notching by applying 50 % thickness reduction at random angular posi-
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tions and creates diffuse thinning patterns by applying a 30 % reduction across all sectors. The generator 
also incorporates age-related variations through a random factor between 0.9–1.0 and applies Gaussian 
smoothing (σ = 1) to create natural-looking transitions between sectors (Fig. 2, c).

To generate juxtapapillary RNFL synthetic images, the generator creates anatomically accurate pat-
terns following established clinical standards. The method implements clinically precise thickness ranges: 
normal (90–120 μm), early loss (70–89 μm), moderate loss (50–69 μm), and advanced loss (30–49 μm). 
The generator employs the standardized 3.4 mm circular scan pattern around the optic nerve head, 
which is the clinical standard for RNFL assessment. It incorporates the TSNIT profile with anatomically 
correct sectoral variations – temporal being the thinnest (70–80 % of base thickness), superior and in-
ferior being the thickest (120–140 % of base), and nasal having medium thickness (80–90 % of base). 
The method also simulates pathological features including wedge defects in glaucomatous cases, posi-
tioned blood vessel shadows at anatomically correct locations (0.7 and –0.7 radians), and age-related 
variations in normal cases. Gaussian smoothing is applied to create realistic tissue-like appearance, 
ensuring the synthetic images closely mimic real OCT scans (Fig. 2, d).

To generate optic nerve sheath synthetic images, the generator creates anatomically accurate rep-
resentations incorporating critical clinical parameters and measurement standards. The implementation 
utilizes a multi-component approach where the central optic nerve (approximately 40 % of total dia-
meter) is rendered with lower intensity (0.3) surrounded by a brighter sheath region (0.8), maintaining 
clinically validated diameter ranges (5.5–6.0 mm for normal, 6.0–6.5 mm for borderline, and >6.5 mm 
for elevated cases). The generator includes a standardized measurement point at the 3.0 mm position 
posterior to the globe, facilitating consistent optic nerve sheath diameter assessment. This methodology 
ensures the synthetic data maintains high fidelity to real OCT imaging characteristics while incorpora-
ting physiological variations and pathological conditions (Fig. 2, e).

To generate macular thickness synthetic images, the generator creates anatomically accurate rep-
resentations incorporating clinically validated features such as proper foveal depression (250–310 μm 
central thickness), concentric ETDRS grid zones (central 1 mm, inner 3 mm, outer 6 mm), and phy-
siologically appropriate Ganglion Cell Layer plus Inner Plexiform Layer (GCL + IPL) complex thin-
ning patterns characteristic of glaucomatous damage. The implementation maintains thickness gradients 

 d e f
Fig. 2. Synthetic samples examples: a – RNFL thickness branch; b – cup-to-disc ratio branch; 

c – neuroretinal rim thickness branch; d – juxtapapillary RNFL branch; e – optic nerve sheath branch; 
f – macular thickness branch

 a b c
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using Gaussian smoothing (σ = 1) for natural transitions between retinal layers, while incorporating 
age-related variations (0.9–1.0 factor) and anatomical noise (2 μm standard deviation) to simulate real 
OCT measurements. This approach ensures generated images reflect both normal anatomical variation 
and pathological changes seen in early to advanced glaucoma, with total retinal thickness constrained 
within clinically observed limits (150–350 μm) and superior-inferior GCL + IPL asymmetry (0.85 fac-
tor) in disease states (Fig. 2, f).

A synthetic dataset comprising 500 samples per feature was generated utilizing the abovementioned 
clinically validated parameters. The data were stored in Hierarchical Data Format 5 (HDF5), incorpo-
rating essential metadata elements including precise generation timestamps and detailed feature speci-
fications. Dataset reproducibility was established through implementation of standardized random seed 
initialization protocols, while clinical validity was maintained through strict adherence to established 
diagnostic criteria across five glaucoma classifications. The complete dataset architecture has been made 
available through an open-source repository, enabling independent validation and extension of the pre-
sent findings by the scientific community [20].

Results and discussion

The multi-branch convolutional neural network was trained using an Adam optimizer with an initial 
learning rate of 0.001 and β1 = 0.9, β2 = 0.999. Training was conducted over 10 epochs with a batch 
size of 32 samples, utilizing an 80–20 training-validation split ratio. The model architecture, compri-
sing six specialized feature extraction branches, was trained end-to-end using categorical cross-entropy 
loss function and L2 regularization (λ = 1 ⋅ 10–4) to mitigate overfitting. Batch normalization was ap-
plied after each convolutional layer to stabilize training, with a momentum parameter of 0.99. Dropout 
(rate = 0.5) was implemented in the fully connected layers. The learning rate schedule incorporated 
a reduction factor of 0.1 when validation loss plateaued for 3 consecutive epochs. Training was per-
formed on a CPU-optimized environment using TensorFlow 2.x, with single-precision floating-point 
arithmetic (FP32) for numerical computations. Model convergence was achieved with a final validation 
accuracy of 94.2 % and a training loss of 0.162, demonstrating robust feature extraction capabilities 
across all anatomical input modalities.

To quantitatively assess the performance and convergence of the model throughout the training 
process, we monitored key metrics, including training loss and validation accuracy. These metrics pro-
vide insights into the effectiveness of the learning rate adjustments and the impact of regularization 
techniques employed to prevent overfitting. As depicted in Fig. 3, a, the training and validation loss 
curves indicate a steady decline in loss over successive epochs, affirming the efficacy of the Adam op-
timizer in minimizing the cost function. Concurrently, Fig. 3, b illustrates the progression of training 
and validation accuracy, demonstrating substantial improvement, which underscores the model’s ability 
to generalize across diverse datasets.

Fig. 3. Training outcomes for the multi-branch convolutional neural network model: 
a – training and validation loss curve; b – training and validation accuracy curve

 a b
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To evaluate our classification model, we employed a confusion matrix generated from predic-
tions made on a test dataset. The results showed that the model correctly identified normal conditions 
578 times but misclassified it as open-angle glaucoma 10 times and as angle-closure glaucoma 15 times. 
For open-angle glaucoma, the model achieved 556 correct predictions, with minor errors in classifica-
tion as angle-closure and normal-tension glaucoma. Angle-closure glaucoma was correctly identified 
534 times, normal-tension glaucoma 571 times, and secondary glaucoma 566 times. These figures in-
dicate strong diagnostic capabilities, particularly with the high number of correct classifications. Ho-
wever, the presence of misclassifications, especially between closely related categories like open-angle 
and ang le-closure, suggests areas where the model could be further refined to enhance its accuracy.

Conclusion

In conclusion, while our multi-branch convolutional neural network demonstrates promising diag-
nostic capabilities for glaucoma classification, further improvements can be made to refine its precision. 
Specifically, focusing on reducing misclassifications between closely related glaucoma categories such 
as open-angle glaucoma and angle-closure glaucoma could enhance diagnostic accuracy. Techniques 
such as increasing the depth of feature extraction layers, incorporating more diverse training data, or ap-
plying more sophisticated forms of data augmentation may help mitigate these issues. Additionally, 
experimenting with alternative optimization algorithms or adjusting hyperparameters could provide 
further gains in model performance. These adjustments are expected to improve the model’s sensiti-
vity and specificity, making it a more reliable tool in clinical settings. To validate these enhancements, 
subsequent testing will be conducted on real image datasets, such as ORIGA and a dataset developed 
in collaboration with ophthalmologists, to ensure performance under clinical conditions.
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