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Abstract: The changes in structural and electronic properties, occurring in one 
monolayer of MoS2 at different concentrations of oxygen atoms doping and 
vacancies are investigated by means of ab initio computer simulation. The 
substitution of sulphur atoms by oxygen ones reduces the band gap for  
high concentrations only, transforming direct-gap semiconductor into an 
indirect one, whereas a smaller concentration of oxygen practically does not 
influence the gap. The presence of sulphur vacancies strongly reduces the band 
gap, leading to bands overlapping at high concentration and appearance of new 
bands at the gap region, which are determined by Mo 4d states with the mixture 
of S 3p states, at low concentrations. 
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1 Introduction 

Two-dimensional crystals are atomically thin materials possessing strong bonding in one 
crystal plane, and stacking of atomic planes by much weaker van-der-Waals forces.  
In recent decades semiconducting two-dimensional transition metal dichalcogenides such 
as MoS2 [1] attract much interest as promising materials for a range of applications, as 
low-power field-effect transistors, logic circuits and phototransistors [1,2]. Electronic 
properties of these materials go through a dramatic change that makes them ideal for 
solar energy applications. These materials can be transformed from indirect band gap 
semiconductors to direct band gap ones when their thickness reduces to a monomolecular 
layer (ML). The values of the band gap lie in the red to near-infrared spectrum, 
characteristics that are extremely advantageous for light-harvesting and light-detecting 
applications. Experimentally determined band gap of bulk MoS2 is indirect and has a 
value in the range of 1.23–1.29 eV [3,4]. 

MoS2 thin-film transistors were fabricated with ion gel gate dielectrics [5].  
They exhibited excellent band transport with a low threshold voltage, high mobility  
and a high on/off current ratio, as well as remarkably high mechanical flexibility;  
and no degradation in the electrical characteristics was observed upon significant 
bending. The structure of 1 ML MoS2 is analogous to graphene [6], but in contrast to the 
metallic behaviour of the latter it demonstrates semiconducting properties. While MoS2 
has already proven possibility of its application in different electronic devices [1,2],  
a tuning of its band gap is important as well as the role of intrinsic defects in view of 
fabricating controlled metal/MoS2 or dielectric/MoS2 gate contacts. Recently McDonnell 
et al. [7] have shown that intrinsic defects dominate the metal/MoS2 contact resistance 
providing a low Schottky barrier independent of metal work function. These natural  
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MoS2 exfoliated sheets exhibit both n-type and p-type conductivity on the same surface 
with a Fermi level shift as >1 eV over tens of nanometres [7]. Besides, Islam et al. [8] 
have reported that electrical properties could be tuned from semiconducting to insulating 
via time-controlled exposure to oxygen plasma and show the creation of insulating 
MoO3-rich disordered domains upon the MoS2 sheet [8]. The formation of an ultrathin 
Mo-oxide interfacial layer was previously suggested by Yang et al. [9] who observed a 
significant improvement of the surface conformal coverage by Al2O3 and HfO2 ALD 
films after oxygen plasma treatment of MoS2, which supplied sufficient chemical 
adsorption sites. Thus we have analysed what kind of effects may happen upon oxygen 
doping, substituting isovalent sulphur atom, and upon removing different number of 
sulphur atoms. 

2 Method 

According to the experimental data, bulk MoS2 is considered to have a hexagonal  
lattice (space group P63/mmc) with a unit cell consisting of two alternating S-Mo-S layers 
attached to each other through Van-der-Waals forces. However, to suppress the influence 
of Van-der-Waals interaction in our work we used only one monolayer (1 ML) MoS2 
with three atoms in the unit cell.  

For modelling of the different concentrations of vacancies and oxygen atoms, we 
considered 1 ML supercell enlarged from 1 × 1 up to 6 × 6 translations (Figure 1) with 
21 Å vacuum width for suppression of the influence of neighbouring layers. For 
structural optimisation and calculation of electronic properties, we used PAW-LDA 
approximation, realised in VASP code [10]; 4p semi-core states of Mo were treated as 
valence. The energy cut-off of 520 eV and 16 × 16 × 1 gamma-centred grid of 
Monkhorst–Pack points were applied. 

Figure 1 Top and side view of MoS2 6 × 6 supercell: a) undoped; b) with S vacancy; c) O-doped 
(see online version for colours) 

 

3 Results and discussions 

The in-plane lattice constant a of the unit cell obtained in our work after full structural 
relaxation is 3.12 Å that is in rather good agreement with the experimental  
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value of 3.16 Å [11]. The 1 ML structure is shown to be stable and to have a direct gap of 
1.84 eV at the K-point, while bulk material is characterised by an indirect gap  
of 1.29 eV. 

The band structures of 1 ML MoS2 for cells translated up to 6 × 6 are presented  
in the Figure 2. The differences observed for 3 × 3 and 6 × 6 cells occur due to the 
symmetry of hexagonal cell; however, the gap value remains unchanged. Unlike  
bulk MoS2, 1 ML material is direct gap semiconductor with the first direct transition in 
the K point. 

By means of computer simulation we analyse the changes, which take place in 1 ML 
MoS2 at different doping concentrations of oxygen atoms and vacancies. First, we 
replaced one sulphur atom from the top of the slab by an oxygen atom and analysed  
the atomic configurations obtained, consecutively enlarging the size of the cell. Obtained 
formation energy of oxygen dopant is –2.3 eV and it was determined as Eformoxy 
= EMoS2+oxy – EMoS2 + µs – µoxy, where EMoS2+oxy is the total energy of structure with 
oxygen atom, substituting the sulphur atom; EMoS2 is the energy of MoS2 without defects; 
µs and µoxy are the chemical potentials of sulphur and oxygen atoms, determined  
from the bulk elemental phases. Oxygen reduces the band gap of MoS2 for 1 × 1  
and 2 × 2 cells, transforming direct-gap semiconductor into an indirect-gap one  
(Figure 3). Nevertheless, this effect is sizable only at very high oxygen concentrations 
(50 at.% and 25 at.%, corresponding to 1 × 1 and 2 × 2 cells, respectively), smaller 
concentrations of oxygen atoms practically does not change the gap; 3 × 3 structure 
demonstrates already direct-gap behaviour. The gap varies from 1.2 eV for 1 × 1 to 1.86 
eV for 6 × 6 cells. 

Figure 2 Electron energy band structures of 1 ML MoS2 for different number of translational 
cells (see online version for colours) 
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Upon modelling of S vacancy introduction, different vacancy sites (on the top and at the 
bottom of the slab) were considered (Figure 1), but no changes in electronic properties as  
a function of the defect position were observed. The analysis of electronic band structures  
shows that the presence of S vacancy strongly reduces the band gap, leading to bands 
overlapping at high concentrations (>25 at.%) and appearance of new bands at the gap 
region (Figure 4) at low concentration. 

To understand which states are mainly responsible for such behaviour of the defect 
contained structures, the partial densities of states (DOSes) for each case have been 
analysed. In the case of oxygen doping (Figure 5), we have found that 2p states of oxygen 
give a sizable contribution only for the 1 × 1 cell, when concentration of oxygen atoms is 
maximal (50 at.%). In all other cases its impact is not meaningful, thus not shown at the 
Figure. The main contributions in the electronic states near the Fermi level are composed 
by Mo 4d and S 3p electrons. 

Analogously, the new bands appearing ~1 eV at the gap region of band structures 
with S vacancy are determined mainly by Mo 4d states with the small mixture of S 3p 
states (Figure 6).  

Summarising the data obtained for defected 1 ML MoS2 (Figure 7) we may  
conclude that the band gap of MoS2 is changing upon introducing oxygen atoms or 
vacancy. The doping by oxygen sizably reduces the gap for 1 × 1 and 2 × 2 cells only. 
Concentrations of oxygen atoms smaller than 25 at.% practically do not change the gap. 
The sulphur vacancy strongly reduces the band gap, leading to no gap at high 
concentrations. 

Figure 3 Electron energy band structures of 1 ML MoS2 with one oxygen atom (see online 
version for colours) 
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Figure 4 Partial DOSes of 1 ML MoS2 with one oxygen atom (see online version  
for colours) 

 

Figure 5 Electron energy band structures of 1 ML MoS2 with 1 S vacancy (see online version  
for colours) 
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Figure 6 Partial DOSes of 1 ML MoS2 with 1 S vacancy (see online version for colours) 

 

Figure 7 Band gap of one monolayer MoS2 depending on the number of translational cells  
(see online version for colours) 

 

4 Conclusion 

We have established that band gap of MoS2 can be changed by oxygen doping or 
introduction of vacancies. Oxygen reduces the gap for 1 × 1 and 2 × 2 cells, transforming 
the direct-gap semiconductor into an indirect one. Nevertheless, this effect is sizable only 
at very high defects concentrations (>25 at.%), the smaller concentrations of oxygen 

Би
бл
ио
те
ка

 БГ
УИ
Р



   

 

   

   
 

   

   

 

   

   662 A.V. Krivosheeva et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

practically do not change the gap. The presence of vacancies strongly reduces the band 
gap, leading to bands overlapping at high concentrations (50 at.%) and appearance of 
new energy levels in the gap region. 
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