Orientation effects in morphology and electronic properties of anatase TiO₂ onedimensional nanostructures. I. Nanowires

<u>Dmitri B. Migas</u>,**a <u>Andrew B. Filonov</u>,*a <u>Victor E. Borisenko</u>*a and <u>Natalia V. Skorodumova</u>bc

Show Affiliations

Phys. Chem. Chem. Phys., 2014,16, 9479-9489

DOI: 10.1039/C3CP54988G

Received 26 Nov 2013, Accepted 26 Mar 2014

First published online 26 Mar 2014

Abstract

By means of *ab initio* calculations we have revealed the existence of sizable anisotropy in electronic properties of anatase TiO_2 nanowires with respect to orientation: nanowires with $\langle 001 \rangle$, $\langle 100 \rangle$ and $\langle 110 \rangle$ axes are found to be direct band-gap, indirect band-gap and degenerate semiconductor materials, respectively. The degenerate semiconducting properties of $\langle 110 \rangle$ -oriented TiO_2 nanowires are predicted to be the intrinsic features closely connected with stoichiometry. A band-gap variation with nanowire diameter is also shown to display rather complex behavior characterized by a competition between quantum confinement and surface state effects that is fully compatible with the available contradictory experimental data. Finally, we propose a model to explain the band-gap variation with size in TiO_2 nanowires, nanocrystals and thin films.