Supporting Information to

Transparent conductive nanoporous aluminium mesh prepared by electrochemical anodizing

Aliaksandr Hubarevich¹, Mikita Marus¹, Andrei Stsiapanau², Aliaksandr Smirnov², Junliang Zhao¹, Weijun Fan¹, Hong Wang^{*,1}, and Xiaowei Sun^{**,1}

¹ School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue 50, 639798 Singapore

² Department of Micro- and Nano-Electronics, Belarusian State University of Informatics and Radioelectronics, P. Brovki 6, 220013 Minsk, Belarus

Received 18 March 2015, revised 27 May 2015, accepted 27 May 2015 Published online June 2015

Keywords transparent conductive layers, porous materials, aluminium, anodizing, liquid crystal cells

* Corresponding author: e-mail EWANGHONG@ntu.edu.sg, Phone: +65 679 053 69, Fax: +65 679 333 18

** e-mail EXWSUN@ntu.edu.sg, Phone: +65 679 043 58, Fax: +65 679 333 18

Evaluation of ϕ_f and ϕ_{crit} values for the hexagonally arranged AI nanoporous mesh

Figure S1 shows the geometrical model based on [1] for the calculation of Al nanoporous mesh volumes ϕ_f and ϕ_{crit} .

According to this model, the values of ϕ_f and ϕ_{crit} are:

$$\delta_{f} = \frac{V_{r_{f}} - \left(V_{p} - V_{ppi} - V_{pc_{f}}\right)}{V_{r_{f}}},$$
(1)

$$\phi_{crit} = \frac{V_{r_{crit}} - \left(V_p - V_{ppi} - V_{pc_{crit}}\right)}{V_{r_{crit}}},$$
(2)

where V_r is the volume of the simulation rectangular unit cell, V_p is the volume of semisphere, V_{ppi} is the volume of the semisphere intersection and V_{pc} is the volume of the spherical cap. The parameters V_p and V_{ppi} are same for both ϕ_f and ϕ_{crit} . Taking into account that the simulation unit cell contains two whole pores, V_p and V_{ppi} are:

$$V_p = \frac{1}{3}\pi d^3, \qquad (3)$$

$$V_{ppi} = \frac{1}{4}\pi(2d+a)(d-a)^2,$$
(4)

where *d* and *a* are the pore diameter and the interpore distance respectively.

The values of $V_{{\it r}_{f}}$, $V_{{\it r}_{crit}}$, $V_{{\it pc}_{f}}\,$ and $V_{{\it pc}_{crit}}\,$ can be calculated by

$$V_{r_{f}} = \sqrt{3}a^{2}\left(\frac{d}{a} - h_{i}\right),$$

$$V_{r_{crit}} = \sqrt{3}a^{2}\left(\frac{d}{a} - h_{crit}\right),$$

$$V_{pc_{f}} = \frac{2}{3}\pi h_{i}^{2}\left(\frac{3}{2}d - h_{i}\right),$$

$$V_{pc_{crit}} = \frac{2}{3}\pi h_{crit}^{2}\left(\frac{3}{2}d - h_{crit}\right),$$

$$(5)$$

$$(6)$$

$$(7)$$

$$(7)$$

$$(9)$$

where h_i and h_{crit} are the distances from the bottom of pore to the substrate as shown in Fig. S1. h_i is varied from

ι_{ent}), .ent of preter the st

Figure S2 Enlarged SEM images of the *Al* nanoporous mesh obtained by the anodizing at the applied voltages of 100 (left) and 180 (right) V and the current density $0.9J_{I}$.

Figure S3 The calculated transmittance against wavelength for the bulk ITO with thickness of 125 and 250 nm and *Al* nanoporous mesh on the glass substrate. The diameter of pores and interpore distance of the *Al* nanoporous mesh are 180 and 200 nm respectively.

Reference

[1] F. Keller, M. Hunter, and D. Robinson, J. Electrochem. Soc. 100, 411 (1953).