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Abstract We study questions of existence and calculation of directional derivatives
of value functions of nonlinear mathematical programming problems depending on
parameters. To this end, we use the directional derivatives of the multivalued mappings,
defined by the constraints of the problems; this approach was pioneered by Demyanov.
We obtain sufficient conditions for existence and explicit formulas for calculating the
directional derivatives of the first and second orders, under weaker hypotheses than
those traditionally assumed.
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1 Introduction

It is _generally recognized that value functions are among the most important func-
tions in'variational analysis, constrained optimization and their numerous applications.
Directional differentiability of value functions plays an important role in stability and
sensitivity analysis of optimization problems with respect to the perturbation of their
parameters, and it was studied in [1- 18]. Questions of existence and calculation of
directional derivatives of value functions were investigated in numerous works, where

B Leonid Minchenko
leonidm@insoftgroup.com

1 Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
2 Advanced Development and Research, Minneapolis, MN, USA

Published online: 09 November 2015 Springer


mailto:leonidm@insoftgroup.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-015-0814-9&domain=pdf

J Optim Theory Appl

key results were obtained by using a variety of different methods [1- 16]. Reviews of
some results can be found in [3,4,17,18].

Though after the fundamental book [12] by Bonnans and Shapiro, the theory of
directional differentiability of value functions in mathematical programming seems
to be almost complete; in this paper we would like to demonstrate that some known
results can be extended.

One of the first studies of differential properties of value functions was carried out
by Demyanov [1]. His approach is focused on the study of directional derivatives of
value functions on the basis of derivative-like constructions of multivalued mappings;
that was probably one of the first attempts to introduce directional derivatives of
multivalued mappings in multivalued analysis. Our paper is based on the Demyanov’s
approach and utilizes a similar technique.

It is worth mentioning that the differential properties of value functions are closely
related to constraint qualifications, or regularity conditions, for optimization problems.
For instance, one of the most fruitful approaches to investigation of the directional
differentiability of value functions is based on the combination of a directional ver-
sion (see [9,10]) of the classical Mangasarian-Fromovitz regularity condition (later
this version was named directional Mangasarian-Fromovitz condition) along with
sufficient conditions for the optimal solution to be Lipschitzian at the pointunder con-
sideration, which were introduced in [8,9,12]. Introduction of new weak constraint
qualifications [15, 19- 21] allows refining some results in this area.

In this paper, we will consider constraint qualification called relaxedMangasarian-
Fromovitz regularity condition (or RMFCQ), which was introduced in the works
[19- 21]. This condition is weaker than the Mangasarian-Fromovitz regularity con-
dition, and it is also weaker than_ the constant rank regularity condition [6], as well
as several other regularity conditions [15,20,21]. We introduce a directional version
of RMFCQ, which we refer to as relaxed directional Mangasarian-Fromovitz condi-
tion (or, more precisely, relaxed directional Mangasarian-Fromovitz condition in the
direction X, whenever we wish to explicitly specify the direction X e Rn). Itis not a
constraint qualification; however, it guarantees directional differentiability of the mul-
tivalued mapping defined by the constraints ofthe mathematical programming problem
and it allows to obtain sufficient conditions for directional differentiability of the value
function. In particular, one can replace the directional Mangasarian-Fromovitz condi-
tion by the relaxed directional Mangasarian-Fromovitz condition and obtain results,
under less restrictive hypotheses, similar to those of Shapiro [8] and Auslender and
Cominetti [9] and some of the results of Bonnans and Shapiro [12].

We also introduce arelaxed directional second-order Mangasarian-Fromovitz con-
dition and use it to establish sufficient condition for the second-order differentiability
of multivalued mappings.

The plan of the paper is as follows. In Sect. 2, we introduce additional notation used
throughout the paper and formulate the relaxed directional Mangasarian-Fromovitz
condition. Then, we study its relationship to the directional Mangasarian-Fromovitz
condition, establish several auxiliary lemmas and prove Theorem 2.1, which provides
sufficient conditions for the directional differentiability of multivalued mappings. In
Sect. 3, we introduce the relaxed directional second-order Mangasarian-Fromovitz
condition and establish a sufficient condition (Theorem 3.1) for the second-order
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directional differentiability of multivalued mappings. In Sect. 4, we provide sufficient
conditions for the directional differentiability ofthe value function and prove formulas
for calculation of its first-order and second-order directional derivatives.

2 Relaxed Directional Mangasarian-Fromovitz Condition

We consider a mathematical programming problem P (x) depending on a parameter
X e Rn:

f (x,y)~ inf
y
yeF(Xx)={yeRm:hi(x,y) <0iel,hi(x,y) =0ice 10}

where | = {1,...,s}110={s+ 1,..., p},and all functions f (x,y), hi(x,y), i =
1 p are assumed to be twice continuously differentiable.

For the multivalued mapping F defined above by the constraints of P (x), we use
the notation

domF :={x eRn : F(x) =03}, grF := {(x,y) : ye F(x), x e Rn}
Consider the value function

p(x):=inf{f (x,y) 1y e F(x)},

and the solution set of the problem P (x)

rn(x) :={y e F(x) : f(x,y) =y(x)}, x e Rn.

Let’s now fix points x0.e domF and y0 e F(x0), for the rest of the paper. In the
sequel, for arbitrary chosen points x e domF, y e F(x), and directions (x,y) e
Rn x Rm, we denote the pairs (x,y) and (x,y) by symbols z and z, respectively. In
particular, specializing x and y to points x 0 and yO fixed above, we denote (x0, y0) by
z0.Throughout the paper, we assume that the set rn(x0+ tx) is nonempty and uniformly
bounded for all sufficiently small numbers t > 0, that is, there exist a number t0 > 0
and a bounded set Y0 ¢ Rm such that rn(x0 + tx) ¢ YO for all t e [0, t0]. Also, we
will freely use the standard “little-0” and “big-O” notations for vector functions into
image spaces R*, k e N; so, forexample, o(t) will denote any such function satisfying
o(t)» Oast™O.

Denote the lower and upper Dini derivatives of the function ¢ at the pointx 0 in the
direction x by

D+(p(x0;x) = limjnft~1((p(x0+ tx) - y(x0)),

D+v(x0;x) := limsupt-1(p(x0+ tx) - p(x0)),
10
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respectively, and denote the directional derivative of the function p in the direction x
at the point x 0 (when it exists) by

p'(x0;x) := I]arrdt~l[p(x0+ tX) —p(x°)].

Following Demyanov [1], we consider also the lower and upper second-order deriv-
atives of the function p at the point x0 in the direction x :

D2 0; = liminf 2 0+ tx) — 0) —tp'(x0; .
+p(x X) I%n t2[|0(X X) —p(x0) —tp'(x0;x)]

D +2p(x0;x) := limsup 2 [p(x0+ tx) —p(x0) —tp'(x0;x)].
to t

We refer to their common value, when it exists, as the second-order derivative of
thefunction p at x0in the direction x, and denote it by p"(x0;x). In other words,

p"(x0;x) := I]ilrgzt—Z(p(x0+ tx) —p(x°) —tp'(x0;x)).

The goal of the present paper is to obtain sufficient conditions for existence of the
derivatives p'(x0; x) and p"(x0; x) under weakerrequirements than those traditionally
used, and to calculate them if they exist; otherwise to find estimates on the lower and
upper derivatives.

Denote 1(z) := {i e | :hi(z) = 0} and consider the Lagrange function L(z. X) =
f (z) + (X, h(z)), where X = (X1..... Xp), h = (hl..... hp) and the set of Lagrange
multipliers

p
A(z) i={XeRp : Vyf(@)+*Vyhi(z) =0
i=1
Xi>0iel(z).Xi =0iel\l(z)}

We will also need the set

p
A0(z) :={XeRp : ™ X{Vyhi(z) =0.Xi >0iel(z).Xi=0iel\l(@}
i=1

of singular Lagrange multipliers.

Our sufficient conditions for existence of directional derivatives p'(x0;x) and
p"(x0;x) will be formulated in terms of requirements similar to constraint qual-
ifications (regularity conditions) on the functions hi(x.y). Recall that constraint
qualifications at the point y0 serve to ensure the validity of the Karush-Kuhn-
Tucker conditions, that is, to guarantee that A(x0.y0) = 0 if y0 is a local
solution of the problem P (x0). For example, the well-known Mangasarian-Fromovitz
constraint qualification (MFCQ) [22] requires the linear independence of vectors
Vyhi (x0.y0) i e 10 and the existence of a vector y0 such that
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(Vyhi (x0.y0). y0) = 0. i e 10. (Vyhi (x0.y0). y0) < 0. i e I(x0.y0).
It is known that MFCQ at the point yO e F (x0) is equivalent to the requirement
no(zo0) = {0}.
To formulate another constraint qualification, introduce the linearized tangent cone
to the set F(x0) at the pointy0 e F(x0):
AMx0)(y0) :={y e Rm : (Vyht(z°).y) <0 i e I(z0). (Vyhi(z0).y) =0 i e l0}

and denote

la(z0) :
1 —z°) :

{i e 1(z0) : {Vyhi(z0).y)=0 Vy e * (x0)(.y°)}
1(z0)\1a(z0).

Then, following Minchenko and Stakhovski [19] and Kruger et al. [21], we say
that the relaxed Mangasarian-Fromovitz constraint qualification (RMFCQ) holds at
the point y0 e F(xO0) iff rank{Vyhi (x0.y0). i e 10U la(x0.y0)} = const in some
neighbourhood of the point yO0.

It is known [19] that RMFCQ is a constraint qualification and it implies MFCQ.
Some other regularity conditions and their comparison can be found in [23,24].

Lemma 2.1 Thefollowing statements hold:
(1) there exists a vector y0 such that
(Vyhi (z0). y0) = 0 i"e 10 U la(z0). (Vyhi (z0). y0) < 0 i e | —(z0);

(2) an index i e 1(z0) belongs to the set 1a(z0) iff there exists a vector X e J10(z0)
such that Xi > 0.

Proof The first assertion has been proved in [21], the validity of the second assertion
follows immediately from Theorem 17.7 of Gorokhovik [25]. a

Following Luderer et al. [14], introduce the lower and upper Dini derivatives of the
multivalued mapping F at the point z0 in the direction x:

DF(z°; x) :={y e Rm : yO+ ty + o(t) e F(x0+ tx). Vt > 0}.
DF(z°; x) :={y e Rm : 3tk ~0 and ifl1” ysuch that
y0 + tkyli e F(x0+ tkx) for all k = 1 2....}.

and the set

r(zo;xc) :={y e Rm : (Vhi(z0).z) <0 i e I(z0).
(Vhi(z0).z) =0 ielo. z= (x.y)}
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Remark 2.1 Itis notdifficultto check (see, e.g., [14]) that DF (z0;x) ¢ DF(z°;x) ¢
r(zo;x).

It is known that the condition DF(z°; x) = r(z°; x) = 0 plays an important role
in studying directional differentiability of the value function. This condition is valid
if MFCQ holds at the point y0 e F(x0). A weaker requirement which still ensures
DF(z°; x) = r(z°; x) = 0, called Mangasarian-Fromovitz condition in the direc-
tion x (or, simply, directional Mangasarian-Fromovitz condition), was introduced in
[9, 10].

Definition 2.1 The Mangasarian-Fromovitz condition in the direction x (briefly
MFx) holds at the point z0 iff the family [Vyhi (z°). i e 10} is linearly indepen-
dent and there exists a vector y0 such that (Vhi (z0). (x.y0)) = 0

i e 10. (Vhi(20). (x.y0)) <0 i e I (z0).

It is known [9] that the following assertions are equivalent:

(1) MFx holds at the point z0;
2) X Xt (Vxhi (z0). x) < 0 for all X e JTo”™ 0)\{0}.
ieloUI (z0)
It is not difficult to see that MFCQ implies MFx for all directions. However, the
following example shows that MFx may not hold, even in very simple optimization
problems.

Example 2.1 Let F(x) = {yeR2:—y2+y2—x <0 —y2+x <0} x e
R. x0 = 0. yO = (0.0)T. Here, the point zO = (x0.y0) satisfies neither MFCQ
nor MFx for any direction. Indeed, forhi(z) = —y2 + y2 —x and h2(z) = —y2+ x,
there does not exist a vector y e Rm such that (Vhi (z0). (x.y) < 0 fori = 1 2,
because these inequalities reduce to y2 < x and y2 > x, which cannot be fulfilled.
This means that MFx does not hold at zO for any direction and hence, by the above
remark, MFCQ does not hold either.

Letr(z; x) = 0 and denote

la(z0.x) :={i el(z0) : (Vhi(z0).(x.y)) = 0. Vy e r(z°;x)}:
I —z0.x) := 1(z0)\la(z0.x).

The proof of next lemma follows from Kruger et al. [21] along the same lines as
that of the first part of Lemma 2.1.

Lemma 2.2 Let r(z°; x) = 0. Then, there exists a vector y0 such that
(Vhi(z0). (x.y0)) = 0. ieloUla(z0.x). (Vhi(z0). (x.y0)) <0. ie I—z° x).

The validity of next lemma follows from the theory of linear inequalities (see, for
example, [25]).
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Lemma 2.3 r(z°; x) = 0 iff X Xi (Vxhi (z°). x) < Ofor all X e J10(z0).
ieloUl (z0)

Inequalities (Vhi (z0). (x.y)) < 0 with indices i e la(z0.x) are called essentially
active for the set r(z°; x).

Next lemma follows from the results about essentially active linear inequalities
(Theorem 17.7 and Corollary 17.3 of Gorokhovik [25]).

Lemma 2.4 Letr(z0;x) = 0 . Then,

(1) the system (Vhi (z°).z) = 0i e 10. (Vhi(z0).z) < 0i e I (z0). has no solutions
iffla(z0.x) = 0;

(2) an inequality with index i e 1 (z0) is essentially active iff there exists a vector
X e 10(z0) such that

'Y Xj(Vxhj (z°).x) = 0and Xi > 0;
jeloUl(z0)

(3) ifla(z0.x) = 0, then there exists X e /10"°), X Xi (Vxhi (z0). x) = 0,
iel0Ula(z0.x)
such thati e la(z0.x) iffXi > 0.

Our goal is to find a condition which imposes weaker restrictions than M F x but
guarantees that DF(z°; x) = r(z°;x)-= 0. Note that a natural idea of requiring lin-
ear independence ofthe vectors {Vyhi (z0) i-e 10 U la(z0)} isnotacceptable because,
by virtue of Lemma 2.4, these vectors are always linearly dependent if 1a(z0.x) = 0.

Definition 2.2 We say thatthe relaxedMangasarian-Fromovitz condition inthe direc-
tion x (briefly RMFx) holds at the point zO iff r(z°;x) = 0, and the system of
(m + 1)-vectors

has constant rank near z0.

Note that, in general, RMFx (just as MFx) is not a constraint qualification since it
does not guarantee the validity ofthe Karush-Kuhn-Tucker condition. Itis not difficult
to see that MFx implies RMFx. Indeed, from the condition M F x at the point z0 it
follows that X Xt(Vxhi (z°). x) < 0 for all X e /10(z0)\{0}. At the same time,

ieloUl (z0)
if 1a(z0.x) = 0 then, due to Lemma 2.4, there exists a nonzero vector X e J/10(z0)
such that

£ X, (Vxht(z0). x) = 0.
ieloUI(z0)
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This means that M F x can hold at the point z0 only if l1a(z0,x) = 0. However,
la(z0,X) = 0 implies that the rank of (1) is constant near z0, that is RMFx holds at
z0.

Next examples demonstrate that the converse is not true and, in general, RMF X does
not imply MFx.

Example 2.2 Let F(x) = {y e R2 : y2—x <0, -y2+ x < 0}, x e R,
x0= 0, y0o= (0, 0)T.

It is not difficult to check that MFx does not hold at z0 = (x0, y0) in any direction.
However, r(z°;x) = {y e R2 : y2 = x} and both constraints h 1(x,;y) = y2—x and
h2(x,y) = —y2 + x are essentially active, and the rank of [Vyh 1(x, y), Vyh2(x, y)}
is constant near z0. This means RMFx holds at z0 in any direction x .

Example 2.3 Let

F(x)=jy eR3 :yj2—y3+x <0, —y2+ y3—x <0, yl—y3=" ,x eR
and x0= 0, yo= (0,0,0)T and x = 1. Then,

r(z0;x) = jy eR3 :y3>x,y3 <Xx,yl—y3=" =jyeR3:y3=y1=Xj

and, therefore, la(z0,x) = {1, 2}. Then, for the functions h1(z) = y2 —y3 + x,
h2(z) = -yf + y3 —x, h3(z) = y1 —y3 one has

Vyhi (z)
{Vxhi (z), x)

Thus, RMFx holds at z0 in the direction x . At the same time it is easy to verify that
MFXx does not hold at the point z0.

Example 2.4 Let F(x) = {y e R3 : yl1+ y2 —x < 0, —y1+ \fby2+ x <0,
—y1—n/3y2+ x <0, y2+ y| —y3 < 0}andx0= 0, y0O= (0,0,0)T, x = 1
3

Since X = (2, 1, 1, 0)T e N10(z0) and X ASxhi (z0), x) = 0, and there is no vector

X e J10”~°) with positive X4, we obtain la(z°, x) = {1, 2, 3} due to Lemma 2.4. It
is easy to check that RMFx holds at z0. At the same time the classical Mangasarian-
Fromovitz constraint qualification does not hold at the point z0 since J10(z0) = {0}.
Moreover, MFx does not hold too.

Lemma 2.5 la(z0,x) C la(z0).
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Proof The inclusion is valid if 1a(z0.x) = 0. Let la(z0.x) = 0 and choose any
i e 1a(z0.x). Then, due to Lemma 2.4, there is a vector X e J10(z0) such that Xi > 0,
Xj = 0 forallj e I\la(z0.x) and X Xt(Vxhi (z°). x) = 0.
ieloUI(z0) i
On the other hand, according to Lemma 2.1 it follows from the inequality Xi > 0
with i e la(z0.x) that the constraint with the index i e la(z0.x) is essentially active
for the set r F(x0)(y0). Thus i e la(z0). |

Example 2.5 Under the hypotheses ofExample 2.3, 1a(z0.x) = {1}. 1a(z0) = {1. 2},
that is, 1a(z0.x) ¢ la(z0).

Theorem 2.1 Let RMFx hold at the point z0. Then,
DF(z°; x) = r(z°; x) = 0.

Proof We have r(z°; x) = 0 by the very definition of RMFx and, as mentioned in
Remark 2.1, DF(z°; x) ¢ r(z°; x). Therefore, we only need to prove r(z°; x) c
DF(z°; x). Due to the definition of la(z0;x) and Lemma 2.3, we have

affr(z0;x) = {y e Rm: (Vyhi (z0). y) + (Vxhi(z0).x) =0
ieloUla(z0.x)}.

Consider the convex function

f  max_ [(Vyhi(z0). y) + (Vxhi (z0). x)]. y e affr(z0;x)
a(y) = J iel—20%) _ 0_
[ +to. yeaffr(z; x).

Then, r(z°; x) = {y e Rm : g(y) < 0}andthereisapointy® suchthatg(y°) < 0.
It follows from Corollary 7.6.1 of Rockafellar [26] that

rir(z°;x) = ri{y @ g(y) <0} = {y : a(y) <0}
= {y : (Vhi (z0).z) = 0 ieloUla(z0.x). (Vyhl(z0).z) <0 iel—z0.x)} .

Lety e rir(z0;x) and let J = la(z0;x) U 10. Then, for any m-vector function
r(t) such that r(t)/t ~ 0 ast | O, there exists a number t0 > 0 such that hi (x0 +
tx.y0+ty + r(t)) < Oforallie I\J and allt e (0; t0). Indeed, ifi e I\I(z°),
then hi (x°. y°) < 0 and hi (x°. yO+ ty + r(t)) < O for all sufficiently small t > 0. If
i e1(z0)butie la(z®. x) (i.e.,,i e I Hz° x)), then hi(x + tx°.y0+ ty + r(t)) =
t (Vhi (z0). z) + o(t) and, therefore, hi (xO+ tx. yO+ ty + r(t)) < 0 for all sufficiently
small positive t since (Vhi (x0.y0).z) < 0.

Let N denote the number of elements of the set J. Since

dhi (x0+ tx. yO+ ty +r)
dt
= {Vxhi (x0+ tx.y0+ ty + r). x) + (Vyhi (x0+ tx.y0+ ty + r).y).
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(Vhi(z°), (x,y)) = ° ieloUl°(z® x),

the rank of the Jacobi matrix

dh1(x0+tx,y°+ty+r) dhl(x°+tx,y°+ty+r) dhl(x°+tx,y°+ty+r)
drl

rm dt
dh2 (xO+tx,y°+ty+r) dh2(x°+tdx,y°+ty+r) dh2(x°+tx,y°+ty+r)
J (r‘ t) = arl drm dt

dhN(x°+tx,y° +ty+r) dhN(x°+tx,y°+ty+r) diN(x°+tx,y°+ty+r)
Kl drm dt

for the functions hi (x° + tx, y°+ ty +r),i e J ,coincides with the rank ofthe system
(1). Moreover, the last column of the matrix J(r, t) is null at the point (r, t) = (°, °).
Hence, atthe point (r, t) = (°, °) itsrank coincides with the rank of the Jacobi matrix

dhl(x°+t§<f,y°+ty+r) dh1(x°+tx,y° +ty+r)
1

dh2 (Yo Hty+H) 2 (kXS Hy+r)
A(r, t) = al drm

dhN(x°+tx,y°+ty+r) dhN(x +tx,y +ty+r)
. drl drm

for hi (x° + tx, y° + ty + r), i e J,regarded as functions of the variable r.
Let the rank of A(r, t) at the point (r,t) = (°, °) be equal to I. Then, from the
condition RMFx it follows that

rank J(r, t)=rank J(°, °) = rankA(°, °) = const = |

for all (r,t) near (°, °). Consequently, rankA(r, t) = 1. This means the system
hi (x°+tx, y°+ty+r), i e J, keepstherankl withrespecttorin some neighbourhood
of the point (°, °). Then, (see p. 5°5 of Zorich [27]) in this neighbourhood | functions
of the system (let them be h1,..., hi) are independent and others depend on them,
that is, h1+1 = ~1(h1, ... hl),..., hl+qg = yq(hl, ... hl), where g = N - | and
,...,(pq are twice continuously differentiable functions in some neighbourhood of
(hay°),..., hi(y®)).
In the neighbourhood of the point (°, °) consider the systems of equations

hi(x°+ tx, y° + ty +r) ,

hl(x° + tx, y° + ty +r) = °,

hl+qg (x° + tx,y° + ty + 1) = °, 2

1 Springer



J Optim Theory Appl

with | + q being equal to N, according to the notation introduced above. In some
neighbourhood of the point (0. 0), this system is equivalent to the system

h1(x0+ tx. yO+ ty +r) = 0.

hl (x0+ tx.y0+ ty +r) = 0. 3)
with the additional condition

hl+1(x0+ tx.y0+ ty +r)

= PLdI(x0+ tx. yO+ ty +r)..... hl (x0+ tx. yO+ ty + r)) = 0.
hl+q(x0+ tx. yO+ ty +r)
= dg(h1(x0+ tx. yO+ ty +r)..... hl (x0+ tx. y0+ ty +r)) = 0.
Note that
®1(h1(z°)..... hl(z0)) = 0..... dq(h1(z0)..... hl (z0)) = 0
and, consequently,
®1(0.....0) =0....4q (0.....0) =0
IfI = m, then, due to the implicit function theorem (see p. 488 of Zorich [27]),

in some neighbourhood of (0, 0) the system (3) defines a continuously differentiable
function r = r(t) such thatr (0) = 0 and dr (0) = limt» 0~ = 0.

Let I < m. Without any loss of generality, we can assume that the rank of the
Jacobian of the system (2) is equal to | with respect to the first | coordinates of the
vector r. Denote r := (r.r) ,wherer = (rl. .... ri), r = (ri+l..... rm). Due to
the implicit function theorem, the system (3) defines a continuously differentiable
function r = r(t.r) near the point (0. 0) such that r(0. 0) = 0, dr(0. 0) = 0. Let
r = 0. Denoter := r(t) = r(t.0). Then, the function r = r(t) = (r(t). 0) satisfies
the system (3) and the additional condition to (3). Therefore, this function satisfies (2).
Moreoverr(t)/1~ 0ast | 0. Thus, foranyy e rir(z°. x) there exists a function
r (t) such that

hi(xO+ tx.y0O+ty +r(t)) =01i e J

hi(x0+ tx. yO+ty +r(t)) <0 ielI\J
for all t e [0.t0] where tO is a sufficiently small positive number. In addition,
r(t)t—4~ Oast ” 0. This means thaty0+ ty + r(t) e F(x0+ tx) forallt e [0. t0]

and, consequently, y e DF(z°; x). Thus, rir(z0;x) ¢ DF(z°;x). This means that
r(z°; x) = DF(z°; x). O
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3 Second-Order Derivatives of Multivalued Mapping F

Consider a vectory e I (z°; x) and introduce, following [14], the lower and upper
second-order Dini derivatives of the multivalued mapping F at the point z° along the
vector z = (x,y) in the direction x:

D2F (z°,z;x) :={v e Rm:3tk ” °such that
y° + tky + tkv + o(tk) e F(x° + tkx) k = 1,2,...},

D2F (z°,z;x" :=jv eRm :y°+ty+ 12v+ o0 (t2" e F {x°+ t"N Vt > °j .
Denote

r2(z°, z;x) := {ve Rm: (Vyht(z°), Vj+ 1 (z, V2hi(z°)z} <° i e 12(z°, 2),

{Vyhi (z°N ,vj+ 27z, V2hi (z°)z] =°iel°},

where 12 (z°, z) := {i e | (z°) : (Vhi (z°), 2) = °}.
Denote also
la(z®, z) := {i e 12(z°,2) : (Vyhi (z°), v) + 2 (z, V2hi(z°)z) = °
VW e I 2(z°,z;Jc)},

I-(z° z) := 12(z°, 2) \ la(z°, z).

Definition 3.1 Lety e r(z°;x). We say thatthe relaxedsecond-order Mangasarian-
Fromovitz condition at the point z° along the vector z = (x,y) in the direction
x (briefly ,RMF2(z)) holds iff ' 2(z°, z;x) = 0 and the system

[ Vyhi(z) \ °
| y )i e I°Ula(z° 2)
\(Vxht(z), x))
has constant rank for all z in some neighbourhood of the point z0.
Lemma 3.1 la(z°,z) C la(z°)
The proofis similar to the proof of Lemma 2.5.
By employing the sets I' 2 (z°, z; x) and D2F(z°,z; x), we can now derive the

following additional conclusion from the assumptions used in Theorem 2.1.

Lemma 3.2 Let RMFx hold at z°. Then, I 2(z°, z; x) = D2F(z°, z; x) = 0 for any
yefl™?; x).
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Proof Lety e r(z°; x) . Then, due to Theorem 2.1,y e DF(z°; x).
SetC :={(t.y) e R xRm :ye F(x0+ tx). t > 0}. That is,

C={(t.ty)eRXRm:t>0 hi(x0+tx.y) <O0iel.
hi (x0+ tx.y) = 0 i e 10}

and, therefore, the linearized cone 'c (0. y0) to the set C at the point (0. y0) is given
by

Fc(0.y0)= {(t.y)eRxRm:t> 0.

(Vyhi (z0). y) + t {Vxhi (z0). x) < 0. ie |(z0).

(Vyhi (z0). y) + t {Vxhi (z0). x) = 0. i e 10}

By using the notation cone S for the cone spanned by a set S, we obtain from this
expression that

Fc(0.y0) = ((0.y) :y e rFHo)(y0)} Ucone j(1.y) 1y e r(z°; x)J.

Let’scheck the validity of the condition RMFC Q for the set C atthe point (0. y0) e
C . The RMFC Q at this point means (see [19] and Definitions 6 and 6 of Kruger et
al. [21]) that

yhi (x0 + tx.y) \ n
rankf\@/ v O \ieloUjam@. y0)f = const

hi (x0+ tx.y). Xj
for all (t,y) near (0, y0), where

IC(0. y0) = {i e I(z0) : ('Vyht(z°).y) + t"ht(z0).x) =0 V(t.y) e Ta(0. yO)}.
Letk e 1C(0. y0), thatis, (Vyhk(z0). y)+ 1{Vxhk(z0). x) = 0 for all
(t.y) e |(0.y) :y e TF&o)(y0)} Ucone |(1.y) :y el(z0;x)J .

Fort = 1 (and for all t > 0 ) the condition above is valid iffk e la(z0.x), and
fort = 0 itis valid iffk e la(z0). Since la(z0.x) ¢ la(z0) due to Lemma 2.5, we
obtain IC(0. y0) = la(z0.x). Thus, the RMFXat z0 implies the RMFC Q for the set
C at the point (0. y0) e C . Then, due to Kruger et al. [21], the local error bound
property holds for the set C at (0. y0) e C. This means there exist a number a > 0
and neighbourhoods V (0) and V (y0) such that the Euclidean distance from (t.y) to
C can be estimated as

d((t.y). C) <a max{0. —t.hi (xO+ tx.y) i e I(z°). |hi(x0+ tx.y) | i e 10}
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forallt e V(°),y e V(y°). It follows from the last inequality that

d((t,y° +ty), C) <a max{® -t,hi(x*+tx,y° +1ty) iel(z°),
Thi(x°+ tx,y°+ ty)|iel°}<Mt2,

for all sufficiently small positive t, where M = const > °. This means that for any
sequence tk i ° there existbounded sequences {ak}, {pk} such thaty® + tky + tfpk'e
F(x° + tkx + akt2x) forallk = 1,2,

Denoting Sk := tk + aktj2 and assuming without any loss of generality that ak = °
forallk = 1,2,..., we obtain

—1+ V 1+ daksk 2
tk=— X kk=sk+0(s

and, consequently,
y° + Sky + skpk + O (Sk)y + o(Sk) e F(x° + Skx).
This means that there exists abounded sequence {vk} such that y° + Sky + S*vk e
F(x° + Skx) forallk = 1,2,... and without'any loss of generality one can suppose
that vk »~ v and y° + Sky + S + 0(§j2) e F(x° + Skx). Then, from the equalities

and inequalities below

hi (x° + Skx,y°® + Sky + S2v + 0(S2)) < ° i e 12(z° z),
hi(x°® + Skx,y°® + Sky + S2v + o(Sk)) = ° i e I°,

it follows that
jVyhi (z°), v) + 2 (z, V2hi(z°rz) <° i e 12(z° 2),
(Vyhi (z°), v) + 1 (iz, V2himg®)}z) = ° i e I°,
thatisv e T 2(z° z; x) and I' 2(z°, z; x) = 0.
Take an arbitrary vector v e I 2(z°, z; x) . Then, for all sufficiently smallt > ° we

have

d((t,y° + ty + 12v), C) < a max{®, —t,hi (x° + tx,y° + ty + 12v) i e 1(z°),
Thi(x°+ tx,y°+ ty + 12v) | ie I°} = o(t2)

and, therefore,

y° + ty + 12v + ov(t2) e F(x° + tx + o(t2)x).
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Set T=t + 0(t2) and obtain y0 + Ty + T2v + ov(t2) e F(x0 + 7x). The function
T= T(t) = t + o(t2) may not be monotone, but it follows from the last inclusion
that there exists a sequence Sk I 0 and a convergent sequence vk » v such that
y0+y + &vk e F(x0+ 8kx) forall k = 1.2.  Thus, v e D2F (z0.z; x) and

I 2(z0.v; x) ¢ D2F(z0.z; x) and, therefore,I" 2(z0.z; v) = D2F(z°. z; v). O

Corollary 3.1 If, inaddition to the conditions ofLemma 3.2, the multivalued mapping
F satisfies the Aubin property [28,29] at the point z0, then T *°;x) = DF(z°; Xx)
and I 2(z0.z; x) = D2F(z°. z; x) = 0 foranyy e '*°; xo).

Corollary 3.2 Lety e '(z0;x). Then, under conditions of Lemma 3.2,for any v e
" 2(z0.z; x) there exist an m-vectorfunction ov(t2) and afunction o(t2) such that

y0+ ty + 12V + ov(t2) e F(x0+ (t + o(t2))x)

for all sufficiently small positive t.

The relaxed second-order Mangasarian-Fromovitz condition at the point z0 along
the vector z = (x.y) in the direction x implies that the multivalued mapping F has
second-order directional derivative. Specifically, the following theorem holds.

Theorem 3.1 Lety e "°; x). Ifthe condition RMF2(z) holds at the point z0 along
the vectorz = (x.y), then D2F(z°. z; x) = [ 2(z0.z; x) = 0.

Proof The proofof Theorem 3.1 follows the scheme which was accepted in the proof
of Theorem 2.1. Namely, we can show that under the assumptions of Theorem 3.1,

ri 12(z0.z;x) = { :{Vyhi(z0). D)+ 1 (z. V2hi(z0)z} = 0 i e loU la(z0.z).
(Vyhi &0).y™ + 2 (2. V2hi (z0)zj <0 i e I —z0.2)}.

Moreover, the implicit function theorem along with the argument similar to the one
used in the proof of Theorem 2.1 yields that the inclusion v e ri " 2(z0. z; xc) implies
v e D2F(z0.z; x). O

Definition 3.2 We say that the uniform relaxed Mangasarian-Fromovitz condition
(URMFX) holds at the point z0 in the direction x iff [(z0;x) = 0 and any system

{vxni @), x)) e 1QUK,

where K ¢ la(z0), has constant rank near the point z0.
Obviously URMFx is implied by MFx. On the other hand, URMFx implies RMFx.
Corollary 3.3 Let URMFx hold at z0. Then, DF(z°;x) = I~°;x) = 0 and

D2F (z0.z;x) = T 2(z0.z;x) for any z = (x.y) such thaty e I~°;x) and
r2(z0.z; x) = 0.
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Proof By virtue of Lemma 2.4, RMFx follows from URMFx, therefore all require-

ments of Theorem 2.1 are fulfilled. Taking into accountLemma 2.5 and I" 2(z°, z; x)

0, it follows from URMFx that RMF?(z) is valid at z°. Thus, all requirements
of Theorem 3.1 are satisfied and, therefore, DF(z°;x) = I~°;x) = 0 and

D2F(z°, z;x) = T 2(z°, z;x).

4 Directional Derivatives of the Value Function

Introduce the cone of critical directions at the pointz°:

D(z°) := [y e I'(z°°) 1 (Vyf(z°),y) < °}.

The following lemma is a slight modification of some results of Shapiro [8].

Lemma 4.1 Let xk » x°, yk e rn(xk) and yk » y° e rn(x°), y(xk) —p(x°)
M \xk —x° |, k = 1, 2,..., where M = const > °. If lim |[xk—x°| 1|yk —y°|

<x, then all limitpoints of the sequence {|[yk —y°| (yk —y°)} belong to D(z°).

Denote ®7°, z,v) := (Vyf(z°), v) + 2(z, V2f (z°)z), wherez = (x,y).
Introduce the sets

iz x) == y* el (z;x) 1 (VE(Z),(x,y%) = min  (Vf (2).(x,y))

and

A2(z;x) = {le A(z) : (VxL(z,X),x)= max (VxL(z,X),x)}

atapointz = (x,y) e grF.
Lemma 4.2 ([9]) Letz = (x,y) e grF. Thefollowing assertions are valid.

1. |fat least one of the sets A(z) or " (z; x) is non-empty, then

inf  (Vf (2),2) = sup (VxL(z,k),x).
yel (z;x) leA(z)

O

<

In addition, if both sets are non-empty, then the extrema on both sides of this

equality are attained.
2. I1fI 2(z, z; x) = 0 for somey e I' *(z; x), then

inf 2®(z,z,v) = sup (z, V2L(z°,X)z).
ver2(z,z;x) xeA2(z,x)

In addition, ifDF(z; x) = ' (z; x) = 0 and D2F(z, z; x) = T 2(z,z-x) = 0

forally e I' (z; x), then the extrema on both sides of the equality are attained.
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Note that it follows from Lemma 4.2 that both sets I *(z; x) and A 2(z; x) are non-
empty if [ (z; x) = 0 and A(z) = 0.

Following Shapiro [8] we say that the strong second-order sufficient condition in
the direction x (SSOSCx) holds at the point zOif ~(z0) = 0 and

sup  {y. VfyL(z0. X)y) > 0 for all nonzero vectors y e D(z0).
XeA2(z0;x)

Lemma 4.3 Let the conditions RMFx and SSOSCx hold at the point z0 = (x0. y0)
such that y0 e rn(x0). Letalsoy e I' *(z°; x) and Iinﬁionft—Z(p(xO + tx) —p(x0) —

t{Vf (z0). z)) be attained on the sequence tk I 0. yk e rn(x0 + tkx) and yk * yO e
rn(x0). Then,

1. lim sup t—1\yk —y01< x and all limitpoints y0 ofthe sequence
kKn(X>

\tk 1(yk —y0)} belong.te IF *(z0; V);

2. there exists derivative p'(x0;x) = {Vf (z°). z);
3. thefollowing equality

D\p(x0;x) = inf inf 20(z°%.z.y)
Y&I™*(z0;x) Vel 2(z0.z;x)
= inf sup {(x.y®). . VZL(z°.x)(x.y))

y&I™ *(z°;x")xeA2(z0.x)
is valid.

Proof Note first of all, that due to Theorem 2.1 and Lemma 4.2, it follows from the

hypotheses that DF (z0;V) = F2°; V) = 0 and both sets A2(z°.x) and I *(z°; x)

are non-empty. Let’sprove the first assertion ofthe lemma. Suppose to the contrary that

limsupt— \yk —y0| = . Denote xk := x0+ tkx. Since F*°; x) = DF(z0;V).
>

kn(
fory e I *(z°; x) there exists a function o(t) such that t—lo(t) »~ Oast I 0 and
y0 + ty + o(t) e F(x0+ tx) for sufficiently small t > 0. Hence,

<p(x0 + tx) — <p(x0)
< f(x0+ tx.y0+ ty + o(t)) —f (x0.y0) < Mt. M = const. (4)

and, consequently, p(xk) —p(x0) < M \xk —xO0\ fork = 1 2.... Then, due to
Lemma 4.1, one can assume without any loss of generality that

(yk —y0)yk —y0o =1~ y e D(z®).

Take a vector X e A2(z°.x) such that (y. VfyL(x0.y0.X)-) > 0.

- 2
Since N 2(z0.z; x) = D F(z0.z;x) = 0 due to Lemma 3.2, we can take a vector
v e I 2(z°. z; x). Then, by virtue of Corollary 3.2, there exist functions o(t) and ov (t)
such that t—lo(t) ~ 0, and t—lov(t) » Oast A 0, and yO + ty + t2v + ov(t2)
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e F(x° + (t + o(t2))x) for all sufficiently small t > °. Thus, we can assume that
y° + tky + tkv + ov(t2) e F(xk + o(tk2)x) for all k = 1,2,... Denote yk :=

y° + tky + tp + ov(tk) and consider the equality

Iirﬁinft 2(p(x° + tx) —p(x°) —t(Vf (z°), 2))

lim t—2(cp(x® + tkx) —(p(x°) —tk(Vf (z°), 2))

p(x°+ (tk + O(tk2))X) —p(x°) —(tk + o(t2))(Vf (z°), 2)

< liminf
kA ™™ (tk + o(t2))2
i ff(x° + (tk + 0(t2))x, ¥k) —f (x°, y°) —(tk + o(t2)) (VT (z°), 2)
A (tk + 0(t2))2
t2
= lim k

k- “ (tk + 0(t2))2
i f (x°+ (tk + o(t|2))x,yk) —f (x°, y°) —(tk + o(t2)) (VT (z°), 2)
s, ' %

< ®r° 7 V). ©)
It follows from the inequality (5) that, for any X e A 2(z°, x), one has

L(xk,yk, X) —L(x°, y°, X) —tk(Vf (z°), (x,V))
< f (xk,yk) —f (x°,y°) —tk(VFf (z°), (X,¥))
< p(xk) —p(x°) —tk (VT (z°), (x,y)) < M°t2, (6)

where M° = const > °.
Taking into account Lemma 4.2, we obtain from (6) for X = X

L (xk, yk, X) —L(x°, y°,X) —tk(VxL (x°, y°, X), X) Met2
Iyk —y°l lyk —y® |

which yields, after passing to the limit, that

(y, VryL(x®, y°, X)y) < °.
The last inequality contradicts the definition of X. Thus, the sequence {t—I (yk —y°)} is
bounded, and without any loss of generality one can assume that t—I (yk —y®°) ~ y°

and, hence, yk = y° + tky° + o(tk). Furthermore,

hi (xk, yk) —hi (x°, y°) <°, ie I(z°),hi(xk,yk) —hi(x°, y°) = °, ie I°
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and, therefore, after passing to the limit,

{Vhi (z0).(x.y°))<0. ie I(z°). {Vhi(z0).(x.y°)) = 0. ie lo.

Thus, y0 e T(z0;x). Moreover, by virtue of Theorem 2.1, foranyy e I » °;x) there
exists a function o(t) such that

f (x0+ tkx.yk) —f (x0.y0) = p(x0+ tkx) —p(x0)

< f (x0+ tkx.y0+ tky + o(tk)) —f (x0.yO0).
and, therefore, {Vf (z0). (x.y0)) < {Vf (z0). (x.y)). thatis, yO e I *(z0;x).
Now let’s prove the second assertion of the lemma. From the inequalities (5) and

(6), it immediately follows that

liminft~2(p(x0+ tx) —p(x0) —t{Vf (z°).z)) = a =

and
sup  {(x.y0). V\ZL(z0.x)(x.y0))<2a < inf 207 z.V). (D)
XeN12(z0,X) Vs-T2(20,z;x)
Let the limit

D+p(x0;x) = Iirg]l\ionfs—l(p(xo + sx) —p(x0))

be attained on a sequence sk I 0. Then,

‘ a < liminfs—2(p(x0+ skx) —p(x0) —sk{Vf (z°). z)).
~oo

Therefore, for any e > 0 there exists a positive integer number kO = kO(e) such that
a —e < s—2(cp(x0 + skx) —p(x0) —sk{Vf (z0). z))
and, consequently,
sk(a —e) < s—1(p(x0 + skx) —p(x0) —sk{VTf (z0). z))
for all k > k0. Then,
D+p(x0;x) —{Vf(z0).z) >0.

that is, D+p(x°; V) > {Vf (z0). z). On the other hand, it follows from (4) that
D+p(x0;x) < {Vf (z°). z). This means that p'(x0;x) = {Vf (z0). 2).
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Finally, let’s prove the third assertion of the lemma. Due to the second assertion,
we have 2a = d 2p(x°; x) in (7). Then, it follows from (7) that

inf sup  ((x,y°), VAzL (z°, X)(x,y)) < D+p(x°;x)
yer *(z°;x)XeA2(z°,x)
< inf inf 29 (z0,z,v).
yer*(z°;x)ver2(z°,z;x)

Taking into consideration Lemma 4.2, we obtain from the last inequality that

D\p(x° x) = inf inf 20 1° z,v)
yer*z°;x)ver2(z®,z;x)
= inf sup  ((x,y0), VAZL(z°,X)(X,y)).

yer*z°x)XeA2(z°,X)

min  (Vf (2°), 2)

Denote rn(x ,x) := y° e rn(x°) :p'(x° x) = min
y°ern(x0) yer(z°;x)

Theorem 4.1 LetRMFx and SSOSCx hold at all points z° = (x°, y°), where y° e
0i(x0). Then,

1. thefunction p is differentiable at the point x0 in the direction x and
=  min min (Vf (2°), 2)
y°em(x®) yer(z°;x)

& i VxL(z°,X),x); 8
ey iy (L 200 ©

p(x° x)

2. thefollowingformula is valid

D\p(x0;x) = inf inf inf 2917, z,v)
yeern(x°,x) yer*(z°;x) ver2(z°,z;x)
= inf inf sup  ((z), VZL (z°,X)(2)). 9)

y°ern(x0,x) yer *(z°;x) XeA2(z°,x)
Proof (1) Let y° e rn(x°). By virtue of Theorem 2.1,
r(z°; x) = DF(z°; x) = 0. Then, for any vector y e r(z°; x) there exists a
function o(t) such thato(t)/t ~ Oast ~ 0,and y°® + ty + o(t) e F(x0+ tx) for all
t > 0. Therefore,
P(x0+ tx) —p(x°) < f (x0O+ tx,y° + ty + o(t)) —f (x°, y°)

and we obtain

D+p(x° x) = lim supt 1 p(x0+ tx) —p(x¥< (V f (2),2)
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forall z = (x.y) such thaty e "~°; x). It follows from this inequality that

D+p(x0;x) < inf inf  {Vf (z0). 2). (10)
yOem(x0) y€I " 0;x)

Under the hypotheses of the theorem, ' *(z0; x) = 0. Lety e I *(z0; x) and consider
the sequence tk I 0 such that

lim t—2(cp(x0 + tkx) —p(x0) —tk{Vf (z0). 2))

liminft—=2(p(x0+ tx) —p(x0) —t{Vf (z°). 2)).

Denote xk := x0+ tkx, yk e oj(xk). k = 1. 2.... Without any loss of generality one
can suppose that the sequence {yk} is convergent. Then, yk »# y0 e F(x0)due to the
closedness of the graph of the multivalued mapping F.
Since p(xk) < p(x0) + tkD+p(x0;x) + o(tk). the passage to the limit in the
equality f (xk.yk) = p(xk)gives f (x0.y0) = Iikm supp(xk) < p(x0),and,therefore,
I\<X>

y0 e rn(x°).
Thus all requirements of Lemma 4.3 are satisfied, so due to this lemma we have

D+p(x°;x) = {Vf(z0).2)) > yOgr?]Exo)ysri?zfo;x) {vi (z9). 2). (11

Comparing the estimates (10) and (11), we obtain that there exists a finite directional
derivative

p(x0;x) = min  {Vf (z°). 2).

min
yOem(x0) yel (z0;x)

Application of Lemma 4.2 now yields (8).
(2) From the hypotheses and the first assertion it follows that I' *(z0;x) = 0

~2
and ' 2(z0.z; x) = D F(z0.z; x) = 0 for all yO e rn(x0). Moreover, rn(x0.x) =
0 for any 'y € I *(z0;x). Take arbitrary yO e rn(x0.x). y e I *(z0;x) and v e
I'2(z0.z; x). Then, there exists a sequence sk I 0 such that
yk = y0 + sky + skV+ ov(sk) e F(x0+ skx). k= 1.2....

Hence,

p(x0+ skx) —p(x0) —skp'(x0;x)
< f (x0+ skx.yk) —f (x0.y0) —sk{Vf (z0). z))
< sk{Vf (z0).z) + s™(z°. z. V) + 0(s2).
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Therefore,

D+p(x° x) < liminf2s—2(p(x0 + skx) —p(x°) —skp'(x°; x)) < 2®(z0,z, v)

forall y° e rn(x0,x), y e I *(z°;x)and v e r 2(z°,z; x). Thus,

D\p(x0;x) < inf inf inf 207°, z,v). (12)
y°em(x°,x) yer*(z°;x)ver2(z°,z;x)

On the other hand, due to the third assertion of Lemma 4.3

D\p(x0;x) = inf inf 2017°, z,v)
yer*(z°;x)ver2(z°,z;x)
= inf sup  ((x,¥°), VAzL(z®, X)(x,¥)),

yer*(z°;x) XeA2(z°,x)
where y° e rn(x0, x). Therefore,

D\p(x0;x) > inf inf inf 207°, z,v).
y°em(x°,x) yer*(z°;x) ver2(z®,z;x)

From the last inequality, Lemma 4.2 and (12), the validity of (9) follows. O

Theorem 4.2 Let conditions URMFx and SSOSCx hold at all points z° = (x°, y°)
such that y° e rn(x°). Then, the valuefunction p has directional derivatives p'(x°; x)
and p"(x0;x) at the point x0 in the direction x and

p'(x° x) = min min  (Vf (z2°), 2)
y°em(x°) yer(z°;x)
= min max (VxL(z°,X),x), 13
y’ern(x°) XeA(zO)( ( )< (13)
p'(xe; x)= inf inf inf 207° z,v)
y°ern(x°,x) yer*(z°;x) ver2(z°,z;x)
= inf inf sup  (z, V2L(z°, X)z). (14)

y°ew(x0,x) yer *(z°;x) XeA2(z°,x)

Proof The equality (13) is valid due to Theorem 4.1. Moreover, from the hypothe-
ses of the theorem, it follows that I *(z°; x) = 0 for all y° e rn(x°). Furthermore,
D2F (z°,z; x) = T2(z° z;x) = 0 foranyy e I *(z°; x) by virtue of Theorem
3.1. Take arbitrary y° e rn(x°, x), y e I *(z°;x) and v e T 2(z° z; x). Since
I 2(z° z; x) = D2F(z°, z; x), the inclusion y° + ty + 12v + 0(t2) e F(x0 + tx) is
valid for all t > ° and, hence,

P(x0+ tx) —p(x°)
< f (x0+ tx,y° + ty + 12v + o(t2)) —f (x0,y°)
= t(VFf (z°),2) + 120 ~°,z, v) + 0(t2).
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Taking into consideration that yO e rn(x0.x) andy e I *(z ;x). for the derivative

D+2p(x0;x) = limsup 4 [p(x0 + tx) —p(x0) —tp'(x0;x)] one can obtain the
t|0
following upper estimate: D+2p(x0;x) < 2®*°. z. v). Then,

D +2p(x0;x) < inf inf inf 20N1° . 7. V). (15)
yO0ew(x0.x) y&I*(z0;x) veTl 2(z0,z;x)

Combining (15) and the estimate for D+p(x@; x) from Theorem 4.1, we obtain

p"(x0;x) = inf )ZCD"O.Z. V)

inf inf
y0st0(x0,X) y&I*(z0;x)
By applying Lemma 4.2 now, we obtain (13). O

Example 4.1 Let F(x) = {y e R2 :yl+ y2 —x < 0. -y1—y2+ x < 0. —yl1<
0. —y2 < 0}. f(y) = y2+ ¥2x e R. x0 = 2.y0 = (1. 1)r. Thus, functions
hi i el = [1.2 3.4} aregivenby hi(x.y) = y1+y2 —x.h2(x.y) = —y1l —
y2+ x.h3(x.y) = —y1.h4(x.y) = —y2. and it is not difficult to check that neither
MFCQ nor MFx hold at the point z0. On the other hand, for any x e Rn. we have
r~ ;x)=[yeR2:yl+y2<x.yl+y2>x} 10(z0;x) = [1. 2}. Furthermore,
RMFx at the point z0 in the direction x holds because

rank[Vyhi (x0.y0). i = 1. 2} = rank = const.

_Xj X

The condition SSOSCx is equivalent to 2(y2 + y|) > 0 for all nonzero vectors y
and, therefore, holds. Thus, due to Theorem 4.1, there exists the derivative p'(x0; x).
Let’s calculate it for the direction x = 1 using Theorem 4.1. It is easy to see that
rn(x) = [(2—x.2—x)T} hence, p'(x0;x) = min[2(yl+ y2)|yl+ y2 = 1} = 2.
The requirements of Theorem 4.2 are also satisfied in this example. So the second
order derivative p"(x0; x) exists. Let’s calculate p"(x0; x). Obviously, I *(z0; x) =
I (z°; x). It'is easy to obtain that ' 2(z°. z; x) = [v [V1+ v2 = 0}. Then, due to (14)
we have

p"(x0;x) [2(M + \2) + 2(yj2+ y]))

min min
Y&I*(z0;x) vsT 2(z0.2;X)
= min  2(y2+ y]|) = 1
y&r *(z0;x)

5 Conclusions
In the present paper, problems of parametric nonlinear programming have been stud-

ied. A new relaxed Mangasarian-Fromovitz condition in the direction (RMFx)
has been introduced. This condition is a weaker requirement than the well-known

1 n
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Mangasarian-Fromovitz condition in the direction (MFx). It has also been proven that,
just like MFx, the new condition ensures directional differentiability of the multivalued
mapping F defined by the set of feasible points ofthe mathematical programming prob-
lem, and it permits to calculate derivatives of the multivalued mapping. This allowed us
to establish sufficient conditions for directional differentiability of the value functions
of nonlinear mathematical problems under weaker requirements than those used tradi-
tionally (see [8,9,12]) as well as to obtain explicit formulas for calculating directional
derivatives of the value functions.

Furthermore, a new relaxed second-order Mangasarian-Fromovitz condition
(RMF? (2)) has been introduced, which allows to calculate second-order directional
derivatives of the multivalued mapping F, establish new sufficient conditions for
second-order differentiability of the value functions and obtain formulas for calculat-
ing the second directional derivatives.

The obtained results generalize the known results [8,9, 12] on directional differentia-
bility of value functions and stability analysis in problems of nonlinear programming.
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