Discrete Optimization 6 (2009) 446-460

Contents lists available at ScienceDirect S DISCRETE
OPTIMIZATION

Discrete Optimization

ELSEVIER journal homepage: www.elsevier.com/locate/disopt

Preemptive scheduling of equal length jobs with release dates on two
uniform parallel machines

Irina N. Lushchakova *

Belarusian State University of Informatics and Radioelectronics, 6, P. Brovka street, Minsk 220013, Belarus

article info abstract
Article history: We consider a problem of scheduling njobs on two uniform parallel machines. For each
Received 30 June 2005) job we are given its release date when the job becomes available for processing. All jobs
iece"’e‘i ;nlr:AVISESOfggm 16 April 2009 have equal processing requirements. Preemptions are allowed. The objective is to find a
ccepte ay N,) . X .
Available online 27 June 2009 schedule minimizing total completion time. We suggest an O(n3) algorithm to solve this
problem.

© 2009 Elsevier B.V. All rights reserved.
Keywords:
Scheduling

Uniform machines
Equal length jobs
Polynomial algorithm

1. Introduction

We consider the following scheduling problem.

There are M = 2 uniform parallel machines and asetN = {1, 2,..., n} ofjobs. Foreachjob i e N we are given its release
date ri > 0 and the processing requirement pi. We suppose that alljobs have equal processing requirements, i.e.pi = p for
all i. Eachjob ihas to be processed on any oftwo machines. Machine L, 1 < L < 2, processes anyjob with the same speed vL
This means that the processing time ofanyjob on machine L is equal to p/vL. Preemptions are allowed. After interruption of
the processing ofjob i, it is possible either to resume its processing on the same machine later on or to processjob i on the
other machine. Each machine can process at most one job at atime and eachjob can be processed on at most one machine
at atime.

For a feasible schedule s, let Ci(s) be the completion time ofjob i. The objective is to find a schedule s* minimizing total
completion time ™ ieN Ci(s).

Following the notation system introduced by Graham et al. [1], we denote the described problem by Q2]ri,pi = p,
pmtn\ Y, Ci.

This problem is indicated by Brucker and Knust [2] as a minimal open one. We suggest an O(n3) algorithm to solve it.

It should be mentioned, that Herrbach and Leung [3] solved the P2\ri,pi = p, pmtn\J2 C problem with two identical
parallel machines (the case vL = v, 1 < L < 2) in O(n logn) time. Recently Baptiste et al. [4] showed that the problem
P\ri, pi= p, pmtn\J2 Ci with an arbitrary number of parallel identical machines can be solved in polynomial time using
linear programming.

On the other hand, Du, Leung and Young [5] proved that the P2\ri, pmtn\J2 C problem is NP-hard. Taking into account
the elementary reductions for the objective functions [2], we conclude, that the Q2\ri,pmtn\Y C problem with arbitrary
processing requirements is also NP-hard. However, when all jobs are available simultaneously, the Q \pmtn\J2 C problem
with the variable number M of machines can be solved in O(n logn + Mn) time [6,1,7].

* Fax: +375 172 932333.
E-mail address: IrinaLushchakova@yandex.ru.

1572-5286/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
d0i:10.1016/j.disopt.2009.05.005

http://www.elsevier.com/locate/disopt
http://www.elsevier.com/locate/disopt
mailto:IrinaLushchakova@yandex.ru
http://dx.doi.org/10.1016/j.disopt.2009.05.005

I.N. Lushchakova/ Discrete Optimization 6 (2009) 446-460 447
machinel 6 7 8

machine2 7 8

Rj Rj+i

Fig. 1. Case 1L.Nj = {6, 7, 8}.

machine 1 10 1 12
machine2 10 n 12
Rj Rij+

Fig.2. Case 2.Nj = {9, 10, 11, 12}.

Notice that the problem Q b pi = p, pmtn~YI Ci with an arbitrary number of parallel uniform machines remains an
interesting open problem for further research.

The paper is organized as follows. In Section 2 we give the general Algorithm G for solving the Q2|rb pi = p, pmtn?Y G
problem. Algorithm G uses the transformation of partial schedules. This transformation process is described in Section 3
whereas its details are discussed in Sections 4 and 5. In Section 6 we prove that Algorithm G constructs an optimal schedule
for the problem under consideration.

2. The general algorithm

Suppose that vl > v2. Define g = vl/v2. Without loss of generality we assume that v2 = 1. Therefore, vli= q > 1.

We shall use the variant of the Shortest Processing Time (SPT) rule for the preemptive scheduling of uniform machines
[6,1,7] which in the case oftwo uniform machines maybe described in the following way.

Suppose that the processing requirements of jobs are arbitrary and all jobs are available simultaneously.

The variant ofthe SPT rule:

Order the jobs according to the nondecreasing order of their processing requirements.

Schedulejob 1 on machine 1. Having scheduledjobs 1, 2,..., i,schedulejob i+1 on machine 2 until machine 1 becomes
available, then interrupt the processing ofjob i+ 1 on machine 2 and resume its processing on machine 1, thereby completing
job i+ 1assoon as possible. O

The above variant of the SPT.rule constructs the schedule minimizing total completion time [6,1,7]. We emphasize that
the SPT rule is the optimal strategy when alljobs are available simultaneously. However, in this paper we investigate the
situation when the release dates ofjobs are not the same.

We shall call our general algorithm Algorithm G

Suppose that the set N ofjobs is ordered according to nondecreasing order of their release dates. Let there be z distinct
release dates R1 < R2 < mmm< Rz.SetRz+l1 = x . Foreachj, 1 <j < z,we define block as the time interval (Rj, R+1].

Algorithm Ggenerates the schedule block by block in increasing order of indexj. We shall denote sj the partial schedule
constructed for the time interval (R1, Ri+1],1 <j < z.

Suppose that we are going to schedule jobs in the time interval (Rj, Rj+1],1 < j < z. Let Nj denote the set ofunscheduled
jobs which are available at the time moment Rj. Starting from the time moment Rj and using the SPT rule, we schedule jobs
ofthe set Nj. Let oj denote the schedule produced by the SPT rule for the set Nj ofjobs. The following cases may occur.

1. Alljobs of the set Nj are completed by the time moment Rj+1. (see Fig. 1). In this case oj is the desired schedule for the
time interval (Rj, R+1].
2. Inthe schedule oj there is no idle machine during the time interval (Rj, Rj+1] (see Fig. 2). Then we interrupt the processing
of the job(s) at the time moment Rj+1 and pass all uncompleted jobs of the set Nj to the next block. The subschedule of
oj in the time interval (Rj, R+ 1] is the desired schedule for this block.
3. In the block (Rj, Ri+1] there is an idle interval on machine 2 and there is ajob from the set Nj, say job k, which is not
completed by the time moment R+1 (see Fig. 3). Then we transform the schedule oj into the new schedule Oj by using
the procedure SIGMA(o0j) described below. If in the schedule Ojjob k is not completed by the time moment Rj+1, we
interrupt its processing at the time R+1 and pass the uncompleted part of k to the next block. Thesubschedule of § in
the time interval (Rj, Ri+1] is the desired schedule for this block.

448 I.N. Lushchakova/ Discrete Optimization 6 (2009) 446-460

machinel 15 16 17

machine2 16 17

Rj Rj+i

Fig.3. Case3.Nj = {15, 16, 17}.

Later on for convenience we shall say that a block is scheduled by Rule 1, 2 or 3, if during the construction ofthe desired
schedule for this block we meet case 1, 2 or 3, respectively.

Below we show that the procedure SIGMA(0j) can be done in O(n2) time. Thus, we construct the schedule for each block
in no more than O(n2) time. Since there are O(n) blocks, the running time of the algorithm is O(n3).

Now let us describe the transformation process of the schedule oj which is used when case 3 occurs.

3. The transformation of the schedule

Recall that in the schedule oj there is the only onejob (namely,job k) which is not completed by the time moment Rj+1
Therefore, after the time moment R+1job k is processed on machine 1. Besides, in the schedule oj only machine 2 has an idle
interval before the time moment Rj+1. Notice, that for any part ofajob with-ap unit processing requirement its processing
time on machine 1is equal to p*/q time units, g > 1, while its processing time on machine 2 is equal to p time units. So it is
impossible to increase the amount of processing done in the block (Rj, Rji+1] without increasing the partial objective function
for the subset ofjobs available before the time moment Rj+1. On the other hand, if we increase the amount of processing
done in the block (Rj, R+1],job k will complete earlier. As a result, we can decrease the sum of completion times for the
subset ofjobs available not earlier than at the time moment Rj+1. So the problem is to find the optimal value by which we
should increase the amount of processing done in the block (Rj, Ri+1]. In other words, we should determine the optimal
completion time ofjob k.

Consider the schedule oj. Suppose that in the schedule oj job k completes the processing at the time moment Ck. As it
was mentioned, in the time interval (Rj+1, Ck]job k is processed on machine 1. Set X = Ck —Rj+1.In the block (Rj, Rj+1] only
machine 2 has an idle interval and let - be its length. This'means that the amount of processing done in the block (Rj, R+1]
can be increased by no more than - units. As a result,job k.can complete the processing on machine 1 earlier by no more
than - units. The length ofthe interval of processing forjob k cannot be less than p time units, that is Ck —Rj > p.It follows,
that the completion time ofjob k can be diminished by no more than p = Ck — (Rj + p) > 0 time units. Summing up, if
we diminish the completion time ofjob k by means of increasing the amount of processing done in the block (Rj, R+1], we
cannot completejob k earlier by more than S = min{—/q, X, p} time units. Notice that in case 3 of Algorithm G we can have
p = 0 (and therefore, S = 0) ifandonly if Nj = {k}. In this situation we do not transform the schedule oj.

Letx e [X—S, X], where S > 0. Suppose that we want to complete the processing ofjob k by the time moment rk+1 + x,
where rkt1 = R+1.I1fx e [X —S; X), let us transform the schedule oj. For each job i, i e Nj, we shall denote its completion
time in the new schedule byfi(x). Besides, we definefi(X) = Ci(oj), i e Nj,andf0(X) = 0.Ifj > 1landx e [X —S, X], we
extend this notation, settingf (x) = Ci(sj—1) for each job i completed in the time interval (R1; Rj]. This means that during
the transformation process we shall not change the partial schedule sj— constructed by Algorithm G for the time interval
(RL; RjL.

Below in Section 4 we describe the procedure TRANS(oj, X). This procedure transforms the schedule oj into the new
schedule oj that is the best one among all schedules for the set Nj such thatjob k completes the processing at the time
moment rk+l + Xx.

Let us introduce the functionFk(x) = J2 k2fi(x), wherex e [X—S; X], and consider its increment AFk(x) = Fk(x) —Fk(X).
Since the transformation ofthe schedule oj by means ofincreasing the amount of processing done in the block (Rj; R+1] also
increase the partial objective function for the subset ofjobs {1, 2,..., k—1}, we conclude that AFk(x) > 0 forx e [X—S; X).
In Section 4 we show that the increment AFk(x) is a linear function or a piecewise linear function with a unique breakpoint.

Now let us considerjobs available not earlier than the time moment R+1.As above, we suppose thatjob k completes the
processing at the time momentfk(x) = rk+1+ x, where rkt1 = Rj+1,x e [X- S, X]. Schedule all unscheduled jobs using the
strategy to complete eachjob as soon as possible.

Start the processing ofjob k + 1 on machine 2 at the time moment rk+ 1. At the time moment rk+1 + x, when machine 1
completes the processing ofjob k, interrupt the processing ofjob k + 1 on machine 2 and resume its processing on machine
1 for p—x time units. Thus, the completion time ofjob k + 1 will be the following:

fkEl(x) = rkgl + x +-..F.)..q_.__

I.N. Lushchakova/ Discrete Optimization 6 (2009) 446-460 449

Considerjob i, where k + 2 < i < n. At first suppose that at the time moment ri machine 1 is available, i.e. ri > fi—(x).
In this casejob iis assigned to machine 1. Machine 1 completes the processing ofjob iat the time momentfi(x) = ri+ p.

Now suppose that at the time moment ri machine 1 is busy, i.e. ri < fi—1(x). In this case job i starts the processing on
machine 2 at the time moment max{fi—2(x), ri} and is processed on this machine forfi—(x) — max{fi-2(x), ri} time units,
until machine 1 becomes available. Atthe time momentfi—1(x) we interrupt the processing ofjob ion machine 2 and resume

its processing on machine 1. Machine 1 processesjob i for p—{1—2(X)—ng xN—2(X),ri}) time units and completes its processing at

the time momentfi(x) = fia(x) + P HOEAGR Bh attio(x) < fid(x) fori= k + 2,k + 3,..., n.Thus, for
the both cases the completion time ofjob i can be expressed by the formula

M

wherek + 2 < i< n.
Notice, thatfk(x) andfk+1(x) are nondecreasing linear functions. Denote </(x) = max{fi—4(x), ri}, di(x) = max{fi—=2(x), ri},
k+ 2 < i< n. ltisclearthat foranyi, k + 2 < i < n, the functions ¢ ”), di(x) and, therefore, the function

(2)

are nondecreasing continuous piecewise linear convex functions. Each of the functions di(x), d ~), fi(x) can be described
by using the list of its breakpoints and the corresponding list of linear functions.

Let us introduce the function Fk (x) = ~ mkfi(x),x e [A —S, X]. Below in Section 5 we describe how to construct the
function Fk (x) in O(n2) time. There we also show that Fk (x) is anondecreasing piecewise linear function with no more than
O(n) breakpoints.

If we complete job k at the time moment fk(x) = rk+l + x, where x e [A —S; X), instead of the time moment
fk(X) = rk+l + X, the function Fk (x) decreases by the value AFk (x) = Fk(X) —Fk(x) > 0. On the other hand, in this
case the function Fk(x) = fi(x), where x'e [X —S, X), increases by the value AFk(x) = Fk(x) —Fk(X) > 0.

Thus, the problem is to find the value x0 maximizing the function AFk (x) — AFk(x), x e [X —S, X]. From the above
consideration it follows that AFk (x) — AFk(x) is a piecewise linear function. So this function can have the maximum value
only in the breakpoints or in the endpoints of the interval [X—S, X]. Therefore, one should choose the maximal value among
the values of the function AFk (x) —AFk(x) in these points. Notice that the function AFk (x) —AFk(x) has O(n) breakpoints.

When the optimal value x0 is found, we transform the schedule oj into the schedule oj.

The following procedure describes all these actions more formally.

SIGMA (0j)

1. For the schedule oj find the value S = min{"®, X, p}.

2. 1fS= 0,set § := oj and go to step 7.

3. For the subset ofjobs {1, 2,..., k — 1} construct the function AFk(x) = Fk(x) —Fk(X),x e [X —S; X] (see Section 4).
4. For the subset ofjobs {k, k + 1,..., n} construct the function AFk (x) = Fk (X) —Fk (x),x e [X —S; X] (see Section 5).
5. Find the value x0 maximizing the function AFk (x) —AFk(x),x e [X —S; X].

6. TRANS(0j, x0) (see Section 4).

7. Stop.

Step 4 of the procedure SIGMA(o0j) is the most time-consuming and requires O(n2) time (see Section 5). Recall that the
function AFk (x) —AFk(x) has O(n) breakpoints. Therefore, Step 5 requires O(n) time. Step 6 requires the constant time (see

Section 4). Therefore, the procedure SIGMA(o0j) can be done in O(n2) time.

4. The procedure TRANS(0j, x) and itsjustification

Let us describe the procedure TRANS(0j, x) that transforms the schedule oj into the schedule G such thatjob k completes
the processing at the time momentrk+1+ x,x e [X —S; X]. Three cases may occur, each of them being handled separately.

450 I.N. Lushchakova/ Discrete Optimization 6 (2009) 446-460

a
machinel k-2 k-1 K
machine2 k-1 K

. fk2) ST

Ri y Ri+i A
b
machinel k-2 k-1 K
machine2 k-1 K k-1

S‘l /\
Ri Y Rj+i x

Fig. 4. The transformation of the schedule 0j. Case 3a.
The motivation to each case and the justification of the correctness are done after the procedure.

TRANS (o0 , x)
(a) If

p
max{rk,fk—=2(X)} + - < fk(x) = rk+1+ x

then do;
al. Find the valuey from the equation

X —x+ = y. @)
q
a2. Transform the schedule oj in the following way. At the time moment fk—1(X) —y interrupt the processing ofjobs
k —1 and k on machines 1 and 2, respectively, and resume their processing on the opposite machines. Denote the obtained
schedule by oj (see Fig. 4(a), (b)). Set Ci(<qj)) = fi(x), i e Nj.

end;
(b) If
, 1, p — (fk—=2(X) —max{rk,fk—=3(X)})
fk—2(X) + < fk(x) = rk+l + x < fk=2(X) +
q q
then do;

bl. Find the valuey from the equation:

FRe2(X) = kL + X (4)

b2. Transform the schedule oj in the following way. At the time momentfk—2(X) —y interrupt the processing ofjob k —1
on machine 2 and start the processing ofjob k on this machine. At the time moment fk—2(X) interrupt the processing of
job k on machine 2 and resume its processing on machine 1. At the same moment resume the processing ofjob k- 1 on
machine 2. Denote the obtained schedule by oj. (See Fig. 5(a) and (b)). Set Ci(orj) = fi(x), i e Nj.
end;

(c) If
op N foN , f M p—(fk=2(X) —rk)
rk g < fk(x) = rk+l + x < fk—2(X) + q
then do;

cl. Transform the schedule oj as it was done at Step b2, settingy = fk—2(X) —rk. Denote the obtained schedule by oj (see
Fig. 6(a) and (b)). -
c2. Find the value x* from the Eq. (4) with the fixed valuey = fk—2(X) —rk. In other words, find x* from the equation:
p — (fk—=2(X) —rk)

rk+l + x* = fk=2(X) + (5)
q .

I.N. Lushchakova/ Discrete Optimization 6 (2009)446-460 451

a
machine 1l k-2 k-1 K
machine2 k-1 K
bl X)
R- Rj+i A
b
machine 1l k-2 K
machine2 k-1 K k-1
Rj v 1200 Rririx
Fig. 5. The transformation of the schedule Qj. Case 3b.
a
machinel k-2 k-1 K
machine2 k-1 K
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr Y-+
\Y;
Ri=Tk y ‘i X
b
machinel k-2 K
machine2 k-1 K k-1
!
H-1
Rj=rk y* fk2(X) Kj+1
c
machinel k-2 K
machine2 k-1 Kk k-2 k-1
h1
Rj=Tk y* Rj+i x
Fig. 6. The transformation ofthe schedule Oj. Case 3c.
c3. Find the value y* from the equation
y*
X*- X+ - = y* (6)
q

c4. Transform the schedule § in the following way. At the time momentfk—2(A) —y* interrupt the processing ofjobs k —2
and k on machines 1 and 2, respectively, and resume their processing on the opposite machines. After the completion ofjob
k —2 on machine 2, resume the processing ofjob k — 1 on this machine. Denote the obtained schedule by G (see Fig. 6(b)
and (c)). Set Ci(Oj) = fi(x), i e N;j.

end;

Stop.

The condition of case (a) means that if we start the processing ofjob k at the time moment max{rk,fk=2(A)}, we can
complete it by the moment rk+1 + x. It should be mentioned that rk > fk—2(A) iffNj = {k — 1, k}. Moreover, we claim that
the following Lemma takes place.

Lemma 1. If Nj = {k —1, k}, only case (a) may occur.

452 I.N. Lushchakova/Discrete Optimization 6 (2009) 446-460
Proof. Suppose that the inequality

rk + p > fk(x) = rk+1+ x (@)
q +
holds. By definition p = fk(X) —rk—p.Therefore, we getrk+1 < rk+ p—x = fk(X) —p —x < fk(X) —S—x = rk+1+X —S—x <
rk+1,because S < p and x > X—S. Thus, we conclude that for the set Nj = {k—1, k} the inequality (7) cannot take place. O

The condition of case (b) means the following. If we start the processing ofjob k at the time momentfk—2(X), we cannot
complete it by the time moment rk+1 + x. However, if we start the processing ofjob k on machine 2 at the time moment
max{rk, fk—=3(X)} and continue its processing on machine 1 from the time momentfk—2(X), we can complete itby the moment
rk+l + x.

It should be mentioned that rk > fk—3(X) iff Nj = {k —2, k — 1, k}. Furthermore, we claim that the following Lemma
takes place.

Lemma 2. If [N|]> 3, only cases (a) or (b) may occur.
Proof. Suppose that it is not the case. In other words, suppose that the inequality

p (k=200 —fk30X) _ . ron ®
q

f n
fk—2 (X) +

holds.

Notice thatfk— (X) = fk—=2(X) + (p —(fk—2 (X) —fk—8(X)))/q. Therefore, from (8)we obtain the inequalityfk— (X) > rk+1+x
which is impossible. So (8) cannot take place if [N|> 3. O

From Lemmas 1 and 2 one can easy obtain the following Corollary.

Corollary 1. Case (c) may occur only if Nj = {k —2, k —1, k}.

The condition of case (c) means the following. If we start the processing ofjob k on machine 2 at the time moment rk
and continue its processing on machine 1 from the time momentfk—2(X), we will not be able to complete it by the moment
rk+1+x. However, ifjob k starts the processing at the time momentrk, it is possible to complete its processing by the moment
rk+l + x.

Consider case (a). Let us explain the Eq. (3) which is connected with the transformation of the schedule oj done at Step
(a2) (see Fig. 4(a), (b)).

In the schedule oj during the interval (fk—(X) —y; fk—1(X)] machine 1 processed job k —1, and the length of this interval
is equal to y time units. In the schedule oj during the interval (fk—1(X) —y; fk—1(X)] machine 1 processesjob k. The Eq. (3)
expresses the structure of this part ofjob k with qy unit processing requirement which is the following:

e a part ofjob k with q(X —x) unit processing requirement which was done in the schedule oj for X —x time units on
machine 1 during the interval (rk+1+ x, rk+1+ X], and is also done for X —x time units on machine 1 in the schedule oj;

» apartofjob k withy unit processing requirement which was done in the schedule oj fory time units on machine 2 during
the interval (fk—(X) —y; fk—(X)], and is done for y time units on machine 1 in the schedule 5j.

As aresult of Step (a2)we havefk—(x) = fk—=2(X)—y+yq = fk—=2(X)+q(X—x) andfk(x) = fk(X)—y+q = fk(X) —(X—x) =
(rk+1+ X) — (X —x) = rk+1+ x. The completion times ofthe otherjobs from the set Nj do not change, i.e.fi(x) = fi(X) forall
i e Nj\{k —1, k}. Notice, that in the schedule oj we havefk—1(x) = fk—(X) + q(X —x) < fk—4(X) + gS < fk4A(X) + g* M=
fk—1(X) + M= R+1.

Now consider case (b). The Eqg. (4) expresses the fact that in the schedule oj obtained at Step (b2) job k completes the
processing at the time moment rk+1 + Xx.

It is not difficult to see that in the schedule oj constructed at Step (b2) machine 1 processes job k for additional
(fk—1(X) —fk—=2(X) —y)/q time units instead of processing ofjob k — 1 for fk—1(X) —fk—2(X) time units. As a result we
complete job k earlier by X —x time units. This fact can be expressed by the following equation:

A S Neg)

From (9) we easy get
(9 —1)(fk—(X) —fk—=2 (X)) + y = q(X —Xx). (10)

Using (10), we obtain the expression for the completion time ofjob k — 1 in the transformed schedule oj: fk—(x) =
fk—=2(X) + y + q(fk—2(X) —fk—=2(X)) = fk=2(X) + (fk—1(X) —Fk—=2(X)) + (g —1)(fk—2(X) —Fk—=2(X)) + y = fk—1(X) + q(X —x).
By the constructionfk(x) = rk+1 + x. The completion times of all otherjobs from the set Nj do not change, i.e.fi(x) = fi(X),
i e NjJ\{k—1, k}. Besides, by the same reason as in case (a) we havefk—1(x) < R+1.

I.N. Lushchakova/ Discrete Optimization 6 (2009) 446-460 453

Finally, consider case (c).

The Eq. (5) expresses the following. In the schedule oj (see Step cl)job k starts the processing on machine 2 at the time
moment rk. At the time momentfk—2(X) the processing ofjob k on machine 2 is interrupted and is resumed on machine 1.
Job k completes the processing at the time moment rk+1 + x*.

Notice, that x* > x. Therefore, the transformation oj ~ 0j is not resultant. In the schedule oj we have fk—1(x*) =
fk— (X) + g(X —x*),fk(x*) = rk+1 + x*,fk—=2(x*) = fk—=2(X) (see case b).

The Eq. (6) is connected with the transformation oj ™ o0j done at Step c4 (see Fig. 6(b) and (c)).The meaning ofthe Eq. (6)
can be explained analogously as it was done for the Eq. (3).

In the schedule cij we have fk(x) = rk+1 + x by the construction. Further, taking into account (6), we get fk—2(x) =
fi—2(X)+(g—1)y* = fk—=2 (X)+q(x* —x) and+k—i (x) = fi—1(x*) + (q—1)y* = fk—=(X)+q(X—x*)+q(x* —x) = fk—(X)+q(X—x).

Now let us prove the following theorem.

Theorem 1. Theschedule oj constructed by the procedure TRANS(0j, x) isthe bestone amongall schedulesfor the block (Rj; R+1]
provided thatjob k completes the processing at the time moment rk+1 + x.

Proof. Letus consider the increment AFk(x)= Fk(x) —Fk(X) ofthe function Fk(x) = YI'k—ifi(x), wherex e [X —S; X].

One can see that AFk(x) = gq(X —x) for cases (a) and (b).

Recall that it is impossible to decrease the completion time ofjob k by X —x time units without increasing the amount of
processing done in the block (Rj; R+1] at least by q(X —x) units. So we conclude, that for the cases (a) and (b) the schedule
oj has the minimal possible increment AFk(x) = q(X —x) ofthe function Fk(x). Therefore, for the cases (a) and (b) we have
constructed the best schedule among all schedules in which job k completes the processing by the time moment rk+1 + x.

Further, it is easy to see that forthe case (c) the constructed schedule oj has the increment AFk(x) = q(X —x) + gq(x* —x),
where x* is the solution of the Eq. (5).

Let us show that the theorem also takes place for the case (c). Recall that case (c) may occur only ifNj = {k —2, k —1, k}.

Denote the processing requirements ofjobs k — 2, k — 1 and k in the schedule oj (see Fig. 6(a)) by pk_2, pk_1 and pk,

respectively. Notice, that pk—2 < pk— < pk = pand \— = fk—=2(X) —rk.

To prove the theorem, we need to investigate the properties of the best schedule o * forjobs k —2, k — 1 and k with
the processing requirements pk_2, pk_1and pk, provided that these jobs can start the processing no earlier than at the time
moment rk and the completion time ofjob k is equal to rk+1 + x.

Property 1.The schedule o * is a dense schedule.

This means that machines work continuously from the time moment rk until each of them completes the processing.
Notice that machine 1 has no idle periods in the interval (rk; rk+1 + x].

Property 2. In the schedule o * machine 2 completes the processing at the time momentfk—1(X) + q(X —Xx).

Indeed, since the completion time ofjob k is decreased by X —x time units, the amount of processing done in the block
(Rj; Rj+1] increases by q(X—x) units. This additional amount ofprocessingcanbe done only on machine 2, because machine 1
has no idle periods during the interval (Rj; R+1] in the schedule o0j. Notice, that in the schedule oj machine 2 completes the
processing at the time momentfk—1(X). Therefore, in the schedule o * machine 2 should complete the processing at the time
momentfk—(X) + (X —x).

Property 3. In the schedule o * the total length of the intervals in whichjobs k —2 and k —1 are processed on machine 1

is less than pk==2.
Let us show that Property 3 takes place. Ifjob k is processed continuously from the time moment rk and the total length
of the intervals ofits processing on machine 2 is equal to pt = fk—2(X) —rk, it cannot complete the processing earlier than

at the time momentfk—2(X) + p—k—Z X)"rk). However, we have rkt1 + x < fk—=2(X) + p—fk—g(>~rk). So we conclude that in
the schedule o * the total length ofthe intervals of processingjob k on machine 2 is less than pk-. Moreover, in o * the total
length of the intervals in which job k is not processed on machine 1 is also less than pk-%t . It follows that the total length of

the intervals in which jobs k —2 and k — 1 can be processed on machine 1 is less than pk=%.

Property 4. In the schedule o * machine 1 at first processesjobs ofthe set {k —2; k — 1} and then processesjob k.

The schedule o * has the minimal total completion time ofjobs k — 2 and k — 1 among all schedules with the fixed
completion time rk+ 1+ x ofjob k. The speed of machine 1 is greater than the one of machine 2. So it is expedient to process
jobs {k —2; k — 1} on machine 1 at the beginning of the interval (rk; rk+1 + x], because in this case it may be possible to
complete these jobs earlier.

For further convenience, we denote the interval of processing ofjobs {k —2; k —1} on machine 1in the scheduleo * by T.

Property 5. In the schedule o * the completion time of onejob from the set {k —2; k — 1} is equal to fk—1(X) + q(X —x).

Let us show that Property 5 takes place. From Property 3 and Property 4 it follows that machine 1 completes the

processing ofjobs {k — 2; k — 1} earlier than the time moment rk + pk—.We have rk + pet = fk—=2(X) < fk(X) <
fk—1(X) + q(X —x). Therefore, at the time momentfk—1(X) + q(X —x) machine 1 processesjob k. Since accordingto Property

454 I.N. Lushchakova/ Discrete Optimization 6 (2009) 446-460

2 in the schedule o * machine 2 completes the processing at the time momentfk—(k) + q(X —x) and machine 1 is busy at
this moment, we conclude that the lastjob processed by machine 2 is ajob from the set {k —2; k — 1}.

Property 6. In the schedule o *job k is processed throughout the interval (rk; rk+1 + x].

In other words, we need to show that machine 2 processes onlyjob k in the interval 7. Assume the converse. Then there
are some subintervals of T during which both machines process jobs of the set {k —2; k — 1}. Since machine 2 does not
processjob k in these subintervals, a greater amount of processing ofjob k will be done on machine 1. As a result, the length
of the interval T will be shorter. However, it is not reasonable.

Indeed, according to Property 5 the completion time ofonejob ofthe set {k —2; k —1} is fixed. To complete the otherjob
of the set {k —2; k — 1} earlier, we should use machine 1 for its processing as much as possible. From Property 3 we obtain

that the length of the interval T is less than < Pk2.So in the interval T machine 1 is used only for the processing of
the job of the set {k —2; k — 1} with nonfixed completion time, the length of the interval T being as large as possible. This
contradicts our assumption. Thus, in the interval T machine 2 processes only job k. After the interval T job k is processed
on machine 1. Since the processing requirement and the completion time ofjob k are known, the length of the interval 1 is
uniquely determined.

Property 7. In the schedule o *jobs k —2 and k — 1 are scheduled in the sequence (k —2; k —1).

Indeed, in the schedule o * one job of the set {k —2; k — 1} is processed on machine 1 during the interval T and after
the completion of this interval continues the processing on machine 2. After the completion of thisjob machine 2 processes
the otherjob of the set {k —2; k — 1} and completes its processing at the time momentfk—1(X) + gq(A —x). To obtain the
minimal total completion time for the set {k —2; k—1} we should schedule these jobs in the sequence (k —2; k —1) because
Pk—2 < Pk—L.

One can easily see that Properties 1-7 uniquely determine the schedule o* which is the same as the schedule §
constructed by algorithm for the case (c). This completes the proofof Theorem 1. 0O

Summing up, we should say the following. IfNj = {k —2; k —1; k}, the function AFk(x) can have a breakpointx*.To find
this breakpoint, one should solve the Eq. (5). In this case we have

AF (x) = fq(X —x) + g(x* —x), ifx e [X —5, x*),
k() Ig(X —x), ifx e [x* X].

For all other cases we have AFk(x) = q(X —x), where x e [X —5, X].
Thus, the increment AFk(x) is a linear or a piecewise linear function.

5. Construction of the function F~(x) = Y?i=kfi(x)

Considerjobs available not earlier than the time moment Rj+1. Suppose thatjob k completes the processing at the time
momentfk(x) = rkt1+ x,where rk+1 = R+1,x e [X —5; X]. Recall that we schedule all unscheduled jobs using the strategy
to complete eachjob as soon as possible (see Section 3, formulas (1), (2)).

Let us show how to determine the function F*(x) = £ r=kf (x),x e [X —5; X], which is used during the transformation
ofthe schedule (see the procedure SIGMA(aj) in Section 3).

We shall use the following data structures:

= Asorted list BREAK which contains endpoints of the interval [X —5, X] andall breakpoints x1,x2, ..., xI-4,xl, ... ofthe
function F* (x)-ordered in such way that X —5 = X0 < x1 < ee« x4 < x| < eee < x|= X. Initiallylist BREAK contains
only endpoints X —5 and X of the interval [X —5, X].

« Sorted lists PHI, PSI, GFATHER, FATHER and SON which determine the current functions «™(x), ™ (x), fi—2(x), fi—1(x) and
fi(x), respectively. Each of these lists contains linear functions in the order which corresponds to intervals determined by
points from list BREAK. Initially lists PHI, PSI and SON are empty, list GFATHER contains function rk+1 + X, list FATHER
contains function (1 —1)x + rk+1+ p.

= A sorted list TOTAL which determines the current value of the function F*(x). This list contains linear functions in
the order which corresponds to intervals determined by list BREAK. Initially list TOTAL contains only one function
X+ rk+l) + ((1 —1)x + rk+l + p).

Jobs k+ 2, k+ 3,..., nare considered consecutively. At each step the currentjob i,k + 2 < i < n, is treated. At first the
contents of lists GFATHER and FATHER are assigned to lists PSI and PHI, respectively.
Let us describe how to obtain the current function ~(x) = max{fi-2(x), ri} and fulfil the appropriate updating of lists

BREAK, PSI, PHI and TOTAL. Since fi—2(x) is a nondecreasing convex function, the following cases may occur:

1. For the branchy = alx + bl,x e [x0; x1) ofthe functionfi—2(x) determined by the first elements of lists BREAK and PSI
the inequality fi—2(x0) = alx0 + bl > ri holds.
We conclude thatfi—2(x) > fi—2(x0)> riand ~(x) = fi—2(x) forx e [X—5;X]. In this case, the updating of lists is not
carried out.

I.N. Lushchakova/ Discrete Optimization 6 (2009) 446-460 455

2. For the branchy = alix + bli,x e [x(—,xl/], of the functionfi—2(x) determined by the last elements of lists BREAK and
PSI the inequality fi—2(X) = fi—2(xli) = a™” + by < ri holds.
We conclude thatfi2(x) < fi—2(X) < riand ?i(x) = riforx e [X —S; X]. In this case in list PSI we replace each
element (i.e. function) by ri.
3. The inequalitiesfi—2(x0) < riandfi—2(X) > ri hold.
In this case the system

fy = fi—=2(x),
y = i, (11)
x e [X—S; X)

has the unique solution, because fi—2(x) is a nondecreasing convex function.
For each branchy = alx + bi,x e [x—1,xl), 1 < | < |, of the function fi—2(x) determined by lists BREAK and PSI we
consider the following system of linear equations and inequalities:

fy = alx + bl,
y = i, (12)
[xI4 < x < xl.

The system (11) is equivalent to the set of systems ofthe form (12). It follows, that only one system of the form (12) has

the unique solution, while the other systems of this set have no solution. The following subcases may occur.

(i) For some function alx + bl from list PSI the system (12) has the unique solution x* e (x—1; xI). This means that x*
is a breakpoint for the function ~ (x) = max{fi—2(x), ri}. Furthermore, x* will be a new breakpoint for the function
F*(x). In this case let us do the following.

Insert the point x*in listBREAK after the point xI1. In list PSI wedelete the first | — lelements (i.e. functions)
and then before the function alx + blinsert | copies of ri. Inlists PHI and TOTAL afterthel-th element we insert one
additional element which is a copy of the I-th element.

(if) For some function ax + bl from list PSI the system (12) has the unique solution x* = xI—.

In this case in list PSI we replace the first | — 1 elements_(functions) by | — 1 copies of ri.

Analogously we obtain the current function ip~x) = max{fi1(x), ri} and fulfil the appropriate updating of lists BREAK,
PHI, PSI and TOTAL. —

Now form list SON which determines the function fi(x). Consider lists PHI and PSI from the beginning to the end. Each
element of list SON (i.e. each branch of the function fi(x)) is obtained by applying the formula (2) to the corresponding
elements of lists PHI and PSI (i.e. to the corresponding branches of the functions ip”x) and " i(x)).

Finally we update list TOTAL. To each element from list TOTAL we add the element with the same number from list SON.

To conclude the step, we delete the contents of list GFATHER and assign to this list the contents of list FATHER. Then
replace the contents of list FATHER by contents of list SON and delete the contents of lists PHI, PSI and SON.

Repeat the described updating of lists forjob i + 1. When the updating of lists forjob n has been completed, stop.

At each step list BREAK is supplemented by no more than one breakpoint. Therefore, by construction F*(x) = Yn=kfi(x),
x e [X —S; X], is anondecreasing piecewise linear function with no more than O(n) breakpoints.

Notice, that at each step the updating of lists is done in O(n) time. Since no more than njobs are considered (i.e. no more
than n steps are fulfilled), the construction ofthe function F* (x) can be done in O(n2) time.

6. Thejustification of the solution correctness
In this section we prove the theorem thatjustifies Algorithm G.

Theorem 2. Algorithm Ggenerates an optimal schedule for the Q2Iri, pi = p, pmtn”~YI C problem.

Proof. We shall prove this theorem by contradiction. The proofis partially based on the scheme developed by Herrbach and
Leung [3].

Consider an instance | with the smallest (in terms of number of distinct release dates) setN = {1, 2,..., n} ofjobs that
violates the theorem. Suppose that there are z distinct release dates R1 < R2 < mmm< Rz forjobs ofthe set N. It is clear that
z > 2.The set N is ordered in nondecreasing order of release dates ofjobs.

Let s* be the schedule produced by Algorithm G for the instance I.We have supposed that s* is not optimal schedule.

We claim that none of the blocks of s*, except the last one, is scheduled by Rule 1 of Algorithm G. Indeed, if in s* some
block is scheduled by Rule 1, we can easy construct an instance 1'with asmaller set N ¢ N ofjobs that violates the theorem.
This contradicts the assumption that | has the smallest set ofjobs violating the theorem.

We also claim that the block (Rz—1, Rz] of s* is not scheduled by Rule 2 of Algorithm G. Suppose that it is not the fact.
Since the last block of s* has not been transformed, we can construct an instance I"with a set N* = N ofjobs by letting the
jobs released at time Rz be released at time Rz—1. The set N* ofjobs is smaller (in terms of number of distinct release dates)
than the set N. For I Algorithm G produces the same schedule s*, while the optimal schedule for I must have the value of

456 I.N. Lushchakova/ Discrete Optimization 6 (2009) 446-460

the objective function no larger than that for I. Therefore, I" has a smaller set ofjobs violating the theorem, contradicting the
assumption that | has the smallest such set ofjobs.

Thus, there is at least one block in s*, namely the block (Rz—i, Rz], that is scheduled by Rule 3.

Consider the structure of the blocks scheduled by Rule 3 in s*. Let Algorithm G construct the subschedule of s* for some

block (Rj, Rj+1] by using Rule 3 (see the procedure SIGMA(0j)),jobs k + 1, k + 2,..., n being available not earlier than the
time moment R+1.Recall thatjob k completes the processing at the time momentfk(x) = Rj+1+ x and the completion times
ofalljobs k + 1, k + 2,..., n are determined by formulas (1).

The following cases may occur:

A. The function AF*(x) — AFk(x), x e [A —S; A], achieves its maximal value in the endpointx = X —S. Therefore, the
function Fk(x) + F*(x) = ki fi(x) + I=kfi(x) is increasing on the interval [X —S; X], because AF*(x) — AFk(x) =
F* (X) —F*(x) — (Fk(x) —Fk(X)) = (Fk(X) + F*(X)) — (Fk(x) + F*(x)).

B. The function AF*(x) —AFk(x),x e [X —S; X], achieves its maximal value in the endpointx = X. In this case the function
Fk(x) + F* (x) is decreasing on the interval [X —S; X].

C. The function AF* (x) — AFk(x), x e [X —S; X], achieves its maximal value in a breakpoint x! e (X —S; X). Then the
function Fk(x) + F* (x) is decreasing on the interval [X —S; x'] and is increasing on the interval [x!; X].

At each step of Algorithm G the number of unscheduled jobs becomes smaller. So the structure ofthe blocks scheduled
by Rule 3 will be the following. At first, blocks are situated in which the amount of processing was increased by the maximal
value ¢S (the value S was determined individually for each of these blocks). We shall call these blocks with the maximal
possible amount of processing blocks of the first type. Then these blocks may be followed by a block in which the amount
of processing was increased by the value q(X —x"), where x" e (X —S; X) is a breakpoint of the function AF* (x) — AFk(x).
Finally, there may situate blocks in which the SPT-subschedules were not transformed, because the number ofthe remaining
unscheduled jobs was rather small for obtaining a profitable transformation. We shall call the blocks in which the assigned
amount of processing is not the maximal possible amount blocks of the second type.

Let sO denote an optimal schedule for the instance I. Since s* is not optimal, we have

n n
(13)

i=1 i=1
Letl+ 1,1+ 2,..., n (1 < | < n) be the jobs with the release date Rz. Consider the new instance | with the set
V= {1,2,..., I} ofjobs. Denote s the schedule produced by Algorithm G for the instance I. The structure of the schedule |
is analogous to the structure of the schedule s . However, block z — 1 ofs is scheduled by Rule 3 while block z — 1 of kis
scheduled by Rule 1. Besides, for instance | Algorithm Gat each step analyzes additional n —ljobs (i.e.jobs I+1, I+ 2,..., n).

So it may occur that for | it is more profitable to do more amount of processing in some block (Rj; R+1],1 <j < z —1, than
for I. Thus, in | the number of the blocks of the first type is no greater than the number of the same blocks in s*. Algorithm
G increases the amount of processing done in each block by means of increasing the loading of machine 2. This leads to the
increasing of the partial objective function. So we have

(14)
i=1 i=1
1. Now assume for the moment that
(15)
Let sO denote an optimal schedule for the instance I. From (15) we have
(16)
Taking into account (14) and (16), we consider the following cases.
(a) Suppose that we have
(17)
Then from (16) we obtain
(18)

However, (18) shows that the instance | which has a smaller set ofjobs violates the theorem, contradicting the
assumption that | has the smallest such set ofjobs. Therefore, the inequality (17) cannot hold.

I.N. Lushchakova/ Discrete Optimization 6 (2009) 446-460 457

(b) Suppose that we have

£9g© < £ Q(s0) < £ Ci(s¥). (19)
i=1 i=1 i=1
For a schedule s let us denote by a(s) the total time of processing the jobs of the setN = {1, 2,..., I} on machine 1

after the time moment Rz. Since in the schedule s* block z — 1 was constructed by Rule 3, in s* machine 2 does not

process the jobs of the set 1§ after the time moment Rz. Notice, that in sBmachine 2 is idle after the time moment Rz.
Besides, a(s) > a(s*), because in 5the block z — 1 was scheduled by Rule 1. The inequality (15) means that in the
blocks 1toz —1 the loading of machine 2 in the schedule s0is less than its loading in s*. Therefore, in the schedule s0

machine 2 does not process the jobs ofthe setN = {1, 2,..., I} after the time moment Rz, otherwise one can show
that the schedule s0 is not optimal. Thus, we have
a(s) > a(s0) > a(s*), (20)
because otherwise the inequality (19) is impossible.
Suppose that a(5) = a(s0). Consider the schedule s. Taking into account that machine 1 is busy in the interval
(Rz; Rz + a(s)], let us assignjobs I + 1,1+ 2,..., n for processing from the time moment Rz according to the

SPT-rule. Denote the obtained schedule for the instance | by sl. In fact, the schedule 51 can be obtained during the
construction ofthe schedule s* by Algorithm G, because the number of blocks ofthe first type ins (and, therefore,
in s1) is less than the number of blocks of the same type in s*. However, Algorithm G constructed the schedule
s*.Thus, by construction we have
n n

£ Ci(sl) > £ Ci(s*). (21)

i=1 i=1
Now consider the schedule s0. We claim that the schedule sO passes exactly one job to block z. Indeed, suppose
that the schedule sO passes several jobs to blockz.Without loss of generality, we may assume that these jobs were
immediately scheduled in block z by the SPT-rule. In this case machine 2 processes thesejobs in block z. However,
as it was discussed above, it is impossible.

Thus, in the schedule s0 the job passed from block z — 1 was immediately scheduled in block z on machine 1,

followed byjobs I+ 1,1+ 2,..., nin aSPT-fashion. Therefore, we obtain
n n
£ Ci(s0) = £ Ci(sl). (22)
i=l+1 i=l+1
Taking into account (21), (19) and (22), we get
n | n | n
£ Ci(s*) < £ Ci(l) + £ Ci(sl)= £ Ci(s)+ £ qfr)
i=1 i=1 i=l+1 i=1 i=l+1

< £Ci(s0)+ £ Ci(s0) = £ Ci(s0),
i=1 i=l+1 i=1
which contradicts (13).

ii. Now suppose that

a(s) > a(s0). (23)
Denote u the smallest number of such block, that its amount of processing in the schedule s differs from the amount
of processing in s0. Beginning from block u, consider how Algorithm G constructs the schedule s*. At each stepj of
Algorithm G,j > u, the partial schedule sj for the set Nj ofjobs is constructed. Now let us take this partial schedule
sj and assign for processing all unscheduled jobs of the set N using the strategy to complete each job as soon as
possible (see formulas (1)). Denote the obtained schedule by sj. Thus, we get a finite sequence of schedules su,

su+l, ...,s* such that the following inequalities hold:
n n n
£ Ci(su) > £ Ci(su+l) > eee> £ Ci(s*). (24)
i=1 i=1 i=1
By the construction we have
a(s) = a(su) > a(su+l) > eee> a(s*). (25)
From (20), (23) and (25) we conclude that there are such consecutive schedules sw, sw+ 1, where w > u, that
a(sw) > a(s0) > a(sw+1l). (26)

Without loss of generality, we suppose that Algorithm G increased the amount of processing done in the block
(Rw+1; Rw+2] of s* by the maximal value g5. (If Algorithm G increased the amount of processing for this block by
the value q(X —x'), one can use the analogous reasoning.) According to remark (A), the function Fk(x) + F*(x) =
L t! f(x)+ E nkfi(x), which was analyzed during step w+1 of Algorithm G, is increasing on the interval [X—5; X].
Notice, that the continuous function f(x) is also increasing on the interval [X —5; X] and fI(X) = Rz + a(sw),
f(X —5) = Rz+ a(sw+1). Due to (26) we conclude, that there exists such pointx e [X—5; X) thatfl(x) = Rz + a(s0)

458

I.N. Lushchakova/ Discrete Optimization 6 (2009) 446-460

and Fk(X —S) + F*(X —S) < Fk(x) + F*(x). The function Fk(x) + F*(x) determines the schedule s such that
Q(s) = Rz + a(s0) and

n n
J2 Ci(s*+1) <1 21 Ci® . (27)
i= i=
Recall, that s is an optimal schedulefor the setJV ={1, 2,..., I}ofjobs. Now suppose thatalljobsofthe set N are

to complete the processing by the time moment Rz+ a(s0). By construction thesubschedule ofs for the set N of
jobs is an optimal schedule for the instance | with this additional restriction. So we have

| |
\]ACi® < J2Ci(sc;. (28)
i=1 i=1

Analogously to (22), it is not difficult to show that

n n

£ Ci(s0) = £ Q(s). (29)

i=l+1 i=l+1
Taking into account (24) and (27)-(29), we obtain

n n n | n

£ c¢,(s*) < E Ci(sw+l) < £ Ci(s) = £ Ci(s) + J2 Ci(s)

i=1 i=1 i=1 i=1 i=l+1

< £q(s°) + £ Ci(s0) = = ¢ *s0),
i=1 i=l+1 i=1

which contradicts (13).
Thus, the inequalities (20), (19) and (15) are impossible.
Suppose that

I |
£ Ci(s0) > £ Ci(s*). (30)
i=1 i=1
From (13) and (30) we have

n n
£ Ci(s0) < £ Ci(s¥). (31)
i=l+1 i=l+1

Since in the schedule s* block z — 1 was constructed by Rule 3, in s* machine 2 does not process the jobs ofthe set N =
{1, 2,..., I} after the time moment Rz. It follows that

a(s0) < a(s*), (32)

because otherwise the inequality (31) does not hold.
Ins* machine 1 has no idle periods inthe interval (R1; Rz + a(s*)] because none ofthe blocks ofs*, exceptthe last one,
is scheduled by Rule 1 of Algorithm G. So in s0 it is possible to complete theprocessingofjobs 1, 2,..., lon machine 1
earlier than the time moment Rz + a(s*) only if machine 2 ins0 is more busy than in s*. The following cases may occur.
(a) The block (Rz—1; Rz] of the schedule s* is a block of the first type. Then according to the structure ofs* all blocks 1 to
z —1scheduled by Rule 3 are blocks ofthe first type. We conclude that ins0 it is impossible to do more processing on
machine 2 in the interval (R1; Rz] than it wasdonein the schedules*. On the other hand, the inequality (32) holds.
Therefore, in sO machine 2 processesjobs of the set Nin block z. We may assumethat s0 passes two or more jobs to
block z. Without loss of generality, we assume that sO immediately schedules these jobs by the SPT rule in block z,
followed byjobs I + 1,1+ 2,..., nin a SPT fashion.
Denote Ax = a(s*) —a(s0) > 0.Then ins0 machine 2 completes the processing ofjobs of the set N no earlier than
at the time moment Rz + gAXx.
Now recall that CI(s*) = Rz + a(s*). According to formulas (1), we have

Cl+i(s*) = Rz + ~ — a(s*) + q,
Ci(s*) = (1 —~ C—1(s*) + 1C—=2(s*) + p, I+ 2<i< n.
\ qj q q
Further, we obtain
C+.1 > R +«,«) —AX)+ p- (‘m —A —gAXx)
q
p —ag\s*) Ax AXx
= [Rz + a(s) + ----—- —AX + — + Ax = ChHl(s*) + —

\ a J q a

(b

~

I.N. Lushchakova/ Discrete Optimization 6 (2009) 446-460 459

Cl+2(s0) = (1 —” CI+1(s0) + 1CI(s0) + p > (1 —~ (c+ 1(s*) + —)
q q q q
1 1 AX AX
+— (cl(s*) —AX) +— = ((1 —)cl+i(s*) +— cl(s*) +—) + (1 — | —=mmmmmmmmmn
q a W qJ q) N 4d) g q
AX
= Cl2(s*) —— ;
q2
Cl+3(s0) = (1 -—) Cl+2(s0) +------ Cl+1(s0) +—
q
i\ 7/ * -x\ 1 (* Ax\ p + AXx
> t1—T7) (CH2(s*) —qb) + g (C+i(s*) + ¢ ¢ P= Cl+3 (s*) + -q'lé;
1 p
Cl+4(s0) = 11 -—) C+3(s0) +----- Cl+2(s0) +---
q/ q q
1 AX 1 AX pAX
> tl—a) (Cl+3(s*) + ‘q?) + 4 (C+2(s*) —+ q = Cl+4(s*) — q4
Therefore, we have
0 (1 1 1 1 (33)
Y ,Ci(s) >Y 1Ci(s)+ am —+ i — + eoe > J2 Ci(s*),
i=l+1) i=l+1 <) -4 d i=l+1 N
because Ax(1 — + gqj — + eee)> 0.The inequality (33) contradicts (31).

The block (Rz—1; Rz] of the schedule s* is a block of the second type.

Denote the smallest number of the second type block in s* by u. Now beginning from block u, transform the
schedule s* in the following way. Consider blocks u to z — 1 consecutively and increase in each of them the amount
of processing by the maximal possible value S (the value S is determined individually for each block). Thus, for each
set Nj ofjobs, u < j < z —1, we construct the transformed partial schedule sj.Then we supplement § by subschedule
forjobs of the set N \ Nj, in which these jobs complete the processing as soon as possible (see formulas (1)). Denote
the obtained schedule forjobs ofthe set N by lij. Thus, we get a finite sequence of schedules s*, su,su+b ..., sz—i.

It should be mentioned that Algorithm G does not transform subschedules ofs* constructed by the SPT-rule for
blocksu, u+1,..., z—1. (Notice, that Algorithm Gcan transform the subschedule ofs* for block u, but for this block
the amount of processing is not increased by the maximal value). This means that it is not profitable to increase the
amount of processing by the maximal value for each of these blocks. Moreover, for the larger number of a block it is
more unprofitable to increase the amount of processing in this block. So we have

£ Ci(s*) < £ Ci(Bu) < £ Ci(Bu+1) < < £ C(szm). (34)
i=1 i=1 i=1
Besides, by the construction we have
a(s*) > a(su) > a(Su+w) > > aelz 7). (35)
At first suppose, that in sO the maximal amount of processing is done in each block 1,2, ...,z — 1. Notice, that in

s0 it is impossible to do more processing in the time interval (R1; Rz] than it was done in the schedule sz—1. So the
inequality
a(s0) < a(s*=2)

holds only if after the time moment Rz machine 2 processes the jobs ofthe set N = {1,2,...,1}. However, in this
case we have
n n
£ C,(5z—)< £ Ci(s0). (36)
i=1 i=1

Combining (34) and (36), we obtain
n n n

£ Ci(s*) < £ QCsz—) < £ Ci(s0)

which Icolntradicts (:ILSI).Therefore, \:v; have

a(s0) > a(s**—). 37)
Now suppose that in some ofblocks 1, 2,..., z —1 ofthe schedule s0 the amount of processing is not maximal. Then
if machine 2 processes the jobs of the set N = {1, 2,..., I} after the time moment Rz, the schedule s0 cannot be

optimal, because it is more profitable to do more processing on machine 2 before the time moment Rz.

Thus, in the schedule sO machine 2 does not process the jobs of the set N after the time moment Rz, and the
inequality (37) holds.

From (32), (35) and (37) we conclude, that either there are such consecutive schedules sw,sw+1, where u < w <
z —2,that +

a(sw) > a(s0) > a(sw+1),

460 I.N. Lushchakova/ Discrete Optimization 6 (2009) 446-460

or
a(s*) > a(s0) > a(su).
According to remark (B), the function Fk(x) + F*(x) = Y t—2fi(x) + X In”~fx), which can be constructed at step w +1
(or at step u) oftransformation ofs*, is decreasing on the interval [A —5; X]. (If Algorithm G increased the amount of
processing for block u by the value q(X —x"), one can use remark (C) and the analogous reasoning). So we conclude
that there exists such pointx e (A —5; A] thatft(x) = Rz + a(s0) and Fk(X) + F*(A) < Fk(x) + F* (x). The function
Fk(x) + F*(x) determines the schedule s such that Q(s) = Rz + a(s0) and
n n

J2Ci(3w)<J2 Ci(s) (38)
i=1 i=1

nor T AE) STA®AN.

Recall, that in the schedules sO and s machine 2 does not process the jobs of the set N after the time moment Rz.
Therefore, the inequality of the form (29) holds. By construction the subschedule of s for the set N ofjobs is an

optimal schedule for the instance | with the restriction that all jobs of the set N are to complete the processing by
the time moment Rz + a(s0). It follows that the inequality of the form (28) holds. Therefore, from (34) and (38) it is
easy to obtain

ECi(s*) < it,Q (s) = £Cii(s) + Ci& < £Q (s0) + Ci(s0) = £ Q(s0),
i=1 i=1 i=1 i=+1 i=1 i=+1 i=1
which contradicts (13).
Thus, the inequality (30) is impossible.

Therefore, s* must be an optimal schedule. O

Acknowledgements

I am grateful to the anonymous referees for their comments that improved the presentation.This research was partially
supported by INTAS, Project 03-51-5501.

References

[1] RL Graham, EL Lawler, J.K. Lenstra, AH.G. Rinnooy Kan, Optimization and approximation in deterministic scheduling and sequencing: A survey,
Annals ofDiscrete Mathematics 5 (1979) 287-326.

[2] P. Brucker, S. Knust, Complexity results forscheduling problems, http://www.mathematik.uni-osnabrueck.de/research/OR/class/.

[3] LA HerrbachJ.Y.-T. Leung, Preemptive scheduling of equal lengthjobs ontwo machines to minimize mean flow time, Operations Research 38 (1990)
487-494.

[4] P. Baptiste, P. Brucker, M. Chrobak, C. Durr, SA. Kravchenko, F. Sourd, The complexity of mean flow time scheduling problems with release times,
Journal of Scheduling 10 (2007) 139-146.

[5] J. Du,J.Y.-T. Leung, G.H. Young, Minimizing mean flow time with release time constraint, Theoretical Computer Science 75 (1990) 347-355.

[6] T. Gonzalez, Optimal mean finish time preemptive schedules, Technical Report 220, Computer Science Department, Pennsylvania State University,
1977.

[7]1 EL Lawler, Recent results inthe theory of machine scheduling, Math. Progr. State Art: 11th Int. Symp.-Bonn(1982) 202-234.

http://arxiv.org///www.mathematik.uni-osnabrueck.de/research/OR/class/

