
Discrete Optimization 6 (2009) 446-460

E L SE V IE R

Contents lists available at ScienceDirect

Discrete Optimization

journal homepage: www.elsevier.com/locate/disopt

s '
DISCRETE
OPTIMIZATION

Preemptive scheduling of equal length jobs with release dates on two
uniform parallel machines

Irina N. Lushchakova *
Belarusian State University o f Informatics and Radioelectronics, 6, P. Brovka street, Minsk 220013, Belarus

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 June 2005
Received in revised form 16 April 2009
Accepted 31 May 2009
Available online 27 June 2009

Keywords:
Scheduling
Uniform machines
Equal length jobs
Polynomial algorithm

We consider a problem of scheduling n jobs on two uniform parallel machines. For each
job we are given its release date when the job becomes available for processing. All jobs
have equal processing requirements. Preemptions are allowed. The objective is to find a
schedule minimizing total completion time. We suggest an O(n3) algorithm to solve this
problem.

© 2009 Elsevier B.V. All rights reserved.

1. In trod u ction

W e consider the following scheduling problem.
There are M = 2 uniform parallel machines and a set N = {1 , 2 , . . . , n} o fjobs. For each jo b i e N we are given its release

date ri > 0 and the processing requirem ent p i. W e suppose that all jo b s have equal processing requirem ents, i.e. p i = p for
all i. Each jo b i has to be processed on any of two machines. Machine L, 1 < L < 2, processes any jo b with the same speed vL.
This means that the processing time of any jo b on machine L is equal to p /v L. Preemptions are allowed. After interruption of
the processing of jo b i, it is possible either to resume its processing on the same machine later on or to process jo b i on the
other machine. Each machine can process at most one jo b at a tim e and each jo b can be processed on at most one machine
at a time.

For a feasible schedule s, let Ci(s) be the com pletion time of jo b i. The objective is to find a schedule s* minimizing total
com pletion tim e ^ ieN Ci(s).

Following the notation system introduced by Graham et al. [1], we denote the described problem by Q 2|ri, p i = p,
pmtn\ Y , Ci.

This problem is indicated by Brucker and Knust [2] as a minimal open one. W e suggest an O(n3) algorithm to solve it.
It should be mentioned, that Herrbach and Leung [3] solved the P2\ri, p i = p , p m tn \ J2 C problem w ith two identical

parallel machines (the case vL = v, 1 < L < 2) in O(n lo g n) tim e. Recently Baptiste et al. [4] showed that the problem
P\ri, p i = p, pm tn\ J2 Ci w ith an arbitrary number of parallel identical machines can be solved in polynomial tim e using
linear programming.

On the other hand, Du, Leung and Young [5] proved that the P2\ri, pm tn\ J2 C problem is NP-hard. Taking into account
the elem entary reductions for the objective functions [2], we conclude, that the Q2\ri, p m tn \ Y C problem w ith arbitrary
processing requirem ents is also NP-hard. However, w hen all jo b s are available simultaneously, the Q \pmtn\J2 C problem
with the variable number M o f machines can be solved in O(n log n + Mn) tim e [6 ,1,7].

* Fax: +375 172 932333.
E-mail address: IrinaLushchakova@yandex.ru.

1572-5286/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.disopt.2009.05.005

Би
бл
ио
те
ка

 БГ
УИ
Р

http://www.elsevier.com/locate/disopt
http://www.elsevier.com/locate/disopt
mailto:IrinaLushchakova@yandex.ru
http://dx.doi.org/10.1016/j.disopt.2009.05.005

I.N. Lushchakova / Discrete Optimization 6 (2009) 446-460 447

machine 1 6 7 8

machine2 7 8

t
Rj Rj+i

Fig. 1. Case 1. Nj = {6, 7, 8}.

machine 1

machine2 10

10

11

11

12

12

Rj Ri-j+i

Fig. 2. Case 2. Nj = {9, 10, 11, 12}.

Notice that the problem Q |rb p i = p, pm tn^Y l Ci w ith an arbitrary number of parallel uniform machines rem ains an
interesting open problem for further research.

The paper is organized as follows. In Section 2 we give the general Algorithm G for solving the Q 2|rb p i = p, p m tn ^ Y Ci
problem. Algorithm G uses the transform ation of partial schedules. This transform ation process is described in Section 3
whereas its details are discussed in Sections 4 and 5 . In Section 6 we prove that Algorithm G constructs an optimal schedule
for the problem under consideration.

2. The g en era l algorithm

Suppose that v1 > v2. Define q = v1 / v 2. W ithout loss of generality we assume that v2 = 1. Therefore, v1 = q > 1.
W e shall use the variant of the Shortest Processing Time (SPT) rule for the preemptive scheduling of uniform machines

[6 ,1,7] which in the case of two uniform machines m aybe described in the following way.
Suppose that the processing requirem ents of jobs are arbitrary and all jobs are available simultaneously.
The variant o f th e SPT rule:
Order the jo b s according to the nondecreasing order of their processing requirem ents.
Schedulejob 1 on machine 1. Having scheduledjobs 1, 2 , . . . , i, schedulejob i + 1 on machine 2 until machine 1 becom es

available, then interrupt the processing of jo b i+ 1 on m achine 2 and resume its processing on machine 1, thereby com pleting
jo b i + 1 as soon as possible. □

The above variant of the SPT rule constructs the schedule minimizing total com pletion tim e [6 ,1,7]. W e emphasize that
the SPT rule is the optimal strategy w hen all jo b s are available simultaneously. However, in this paper we investigate the
situation w hen the release dates of jo b s are not the same.

W e shall call our general algorithm Algorithm G.
Suppose that the set N of jo b s is ordered according to nondecreasing order of their release dates. Let there be z distinct

release dates R1 < R2 < ■ ■ ■ < Rz. Set Rz+1 = ж . For each j , 1 < j < z , we define block as the time interval (Rj, Rj+1].
Algorithm G generates the schedule block by block in increasing order of index j . W e shall denote sj the partial schedule

constructed for the tim e interval (R1, Rj+ 1] ,1 < j < z .
Suppose that we are going to schedule jo b s in the tim e interval (Rj, Rj+1] ,1 < j < z . Let Nj denote the set ofunscheduled

jo b s which are available at the tim e m om ent Rj. Starting from the tim e m om ent Rj and using the SPT rule, we schedule jobs
of the set Nj. Let oj denote the schedule produced by the SPT rule for the set Nj of jobs. The following cases may occur.

1. All jo b s of the set Nj are com pleted by the tim e m om ent Rj+1. (see Fig. 1). In this case oj is the desired schedule for the
tim e interval (Rj, Rj+ 1].

2. In the schedule oj there is no idle machine during the tim e interval (Rj, Rj+1] (see Fig. 2). Then we interrupt the processing
of the jo b (s) at the tim e m om ent Rj+1 and pass all uncom pleted jo b s of the set Nj to the next block. The subschedule of
oj in the tim e interval (Rj, Rj+ 1] is the desired schedule for this block.

3. In the block (Rj, Rj+ 1] there is an idle interval on machine 2 and there is a jo b from the set Nj, say jo b k, which is not
completed by the tim e m om ent Rj+1 (see Fig. 3). Then we transform the schedule oj into the new schedule Oj by using
the procedure SIGMA(oj) described below. If in the schedule Oj jo b k is not completed by the time m om ent Rj+ 1, we
interrupt its processing at the tim e Rj+1 and pass the uncom pleted part of k to the next block. The subschedule of Oj in
the tim e interval (Rj, Rj+ 1] is the desired schedule for this block.

Би
бл
ио
те
ка

 БГ
УИ
Р

448 I.N. Lushchakova / Discrete Optimization 6 (2009) 446-460

machine 1

machine2

15 16 17

16 17

Rj Rj+i

Fig. 3. Case 3. Nj = {15, 16, 17}.

Later on for convenience we shall say that a block is scheduled by Rule 1, 2 or 3, if during the construction of the desired
schedule for this block we m eet case 1, 2 or 3, respectively.

Below we show that the procedure SIGMA(oj) can be done in O(n2) time. Thus, we construct the schedule for each block
in no more than O(n2) tim e. Since there are O(n) blocks, the running tim e of the algorithm is O(n3).

Now let us describe the transform ation process of the schedule oj which is used w hen case 3 occurs.

3. The tran sfo rm atio n o f th e schedule

Recall that in the schedule oj there is the only one jo b (namely, jo b k) which is not com pleted by the tim e m om ent Rj+ 1.
Therefore, after the tim e m om ent Rj+1 jo b k is processed on machine 1. Besides, in the schedule oj only machine 2 has an idle
interval before the tim e m om ent Rj+ 1. Notice, that for any part of a jo b w ith a p unit processing requirem ent its processing
tim e on machine 1 is equal to p ' /q tim e units, q > 1, while its processing tim e on machine 2 is equal to p tim e units. So it is
impossible to increase the amount o f processing done in the block (Rj , Rj+1] w ithout increasing the partial objective function
for the subset of jo b s available before the tim e m om ent Rj+ 1. On the other hand, if we increase the amount of processing
done in the block (Rj, Rj+ 1], jo b k will com plete earlier. As a result, we can decrease the sum of com pletion tim es for the
subset of jo b s available not earlier than at the tim e m om ent Rj+ 1. So the problem is to find the optimal value by which we
should increase the amount of processing done in the block (Rj, Rj+ 1]. In other words, we should determine the optimal
com pletion tim e of jo b k.

Consider the schedule o j . Suppose that in the schedule oj jo b k com pletes the processing at the tim e m om ent Ck. As it
was m entioned, in the tim e interval (Rj+ 1, Ck] jo b k is processed on machine 1. Set X = Ck — Rj+1 . In the block (Rj, Rj+1] only
machine 2 has an idle interval and let - be its length. This means that the amount of processing done in the block (Rj, Rj+ 1]
can be increased by no more than - units. As a result, jo b k can com plete the processing on machine 1 earlier by no more
than - units. The length of the interval of processing for jo b k cannot be less than p tim e units, that is Ck — Rj > p .I t follows,

that the com pletion tim e of jo b k can be diminished by no more than p = Ck — (Rj + p) > 0 tim e units. Summing up, if
we diminish the com pletion tim e of jo b k by means of increasing the amount of processing done in the block (Rj, Rj+ 1], we
cannot com plete jo b k earlier by more than S = m in{—/q, X, p } tim e units. Notice that in case 3 of Algorithm G we can have
p = 0 (and therefore, S = 0) if and only if Nj = {k}. In this situation we do not transform the schedule oj.

Let x e [X — S, X], where S > 0. Suppose that we w ant to com plete the processing of jo b k by the tim e m om ent rk+ 1 + x,
w here rk+ 1 = Rj+ 1 . If x e [X — S; X), let us transform the schedule o j. For each jo b i, i e Nj, we shall denote its com pletion
tim e in the new schedule by f i (x). Besides, we define f i (X) = Ci(o j), i e Nj, and f 0(X) = 0. If j > 1 and x e [X — S, X], we
extend this notation, setting f (x) = Ci(sj—1) for each jo b i com pleted in the tim e interval (R1; Rj]. This means that during
the transform ation process we shall not change the partial schedule sj —1 constructed by Algorithm G for the time interval
(R1 ; Rj].

Below in Section 4 we describe the procedure TRANS(oj, x). This procedure transform s the schedule oj into the new
schedule oj that is the best one among all schedules for the set Nj such that jo b k com pletes the processing at the time
m om ent rk+ 1 + x.

Let us introduce the functionFk (x) = J 2 k—1 f i (x), w here x e [X — S; X], and consider its increm ent AFk(x) = Fk (x) — Fk(X).
Since the transform ation of the schedule o j by means of increasing the amount of processing done in the block (Rj; Rj+ 1] also
increase the partial objective function for the subset of jo b s {1, 2 , . . . , k — 1}, we conclude that AFk (x) > 0 for x e [X — S; X).
In Section 4 we show that the increm ent AFk (x) is a linear function or a piecewise linear function w ith a unique breakpoint.

Now let us consider jo b s available not earlier than the time m om ent Rj+1 . As above, we suppose that jo b k com pletes the
processing at the tim e m om ent f k (x) = rk+ 1 + x, where rk+ 1 = Rj+ 1 , x e [X - S, X]. Schedule all unscheduled jo b s using the
strategy to com plete each jo b as soon as possible.

Start the processing of jo b k + 1 on machine 2 at the tim e m om ent rk+ 1. At the tim e m om ent rk+ 1 + x, w hen machine 1
com pletes the processing of jo b k, interrupt the processing of jo b k + 1 on machine 2 and resume its processing on machine
1 for p—x tim e units. Thus, the com pletion time of jo b k + 1 will be the following:

p — x
f k+1(x) = rk+1 + x +-----------+ + q

Би
бл
ио
те
ка

 БГ
УИ
Р

I.N. Lushchakova / Discrete Optimization 6 (2009) 446-460 449

Consider jo b i, where k + 2 < i < n. At first suppose that at the tim e m om ent ri machine 1 is available, i.e. ri > f i—1(x).
In this case jo b i is assigned to machine 1. Machine 1 com pletes the processing o fjo b i at the time m om ent f i (x) = ri + p .
Now suppose that at the tim e m om ent ri machine 1 is busy, i.e. ri < f i—1(x). In this case jo b i starts the processing on
machine 2 at the time m om ent m ax {fi—2(x), ri} and is processed on this machine for f i—1(x) — m ax {fi - 2 (x), ri} tim e units,
until machine 1 becom es available. At the time m om ent f i—1(x) we interrupt the processing o fjo b i on m achine 2 and resume
its processing on machine 1. Machine 1 processes jo b i for p— (l—1(x)—mq x l̂—2(x),ri}) tim e units and com pletes its processing at

where k + 2 < i < n .
Notice, that f k(x) and f k+ 1(x) are nondecreasing linear functions. Denote <^(x) = m ax {fi—1(x), ri}, фi(x) = m ax{fi—2(x), ri},

k + 2 < i < n. It is clear that for any i, k + 2 < i < n, the functions ф ^) , фi(x) and, therefore, the function

are nondecreasing continuous piecewise linear convex functions. Each of the functions фi(x), ф ^) , f i (x) can be described
by using the list of its breakpoints and the corresponding list of linear functions.

Let us introduce the function Fk (x) = ^ n=kf i (x), x e [A — S, X]. Below in Section 5 we describe how to construct the
function Fk (x) in O(n2) tim e. There we also show that Fk (x) is a nondecreasing piecewise linear function w ith no more than
O(n) breakpoints.

If we com plete jo b k at the tim e m om ent f k(x) = rk+ 1 + x, where x e [A — S; X), instead of the tim e m om ent
f k (X) = rk+1 + X, the function Fk (x) decreases by the value AFk (x) = Fk (X) — Fk (x) > 0. On the other hand, in this

case the function Fk (x) = f i (x), where x e [X — S, X), increases by the value AFk(x) = Fk(x) — Fk(X) > 0.
Thus, the problem is to find the value x0 maximizing the function AFk (x) — AFk (x), x e [X — S, X]. From the above

consideration it follows that AFk (x) — AFk (x) is a piecewise linear function. So this function can have the maximum value
only in the breakpoints or in the endpoints of the interval [X — S, X]. Therefore, one should choose the maxim al value among
the values of the function AFk (x) — AFk (x) in these points. Notice that the function AFk (x) — AFk(x) has O(n) breakpoints.

W hen the optimal value x0 is found, we transform the schedule oj into the schedule oj.
The following procedure describes all these actions more formally.

SIGMA (oj)
1. For the schedule oj find the value S = m in {^ , X, p } .

2. If S = 0, set Oj := oj and go to step 7.
3. For the subset of jo b s {1 , 2 , . . . , k — 1} construct the function AFk(x) = Fk (x) — Fk (X), x e [X — S; X] (see Section 4).
4. For the subset of jo b s {k, k + 1 , . . . , n} construct the function AFk (x) = Fk (X) — Fk (x), x e [X — S; X] (see Section 5).
5. Find the value x0 maximizing the function AFk (x) — AFk (x), x e [X — S; X].
6. TRANS(oj, x0) (see Section 4).
7. Stop.

Step 4 of the procedure SIGMA(oj) is the most tim e-consum ing and requires O(n2) tim e (see Section 5). Recall that the
function AFk (x) — AFk(x) has O(n) breakpoints. Therefore, Step 5 requires O(n) time. Step 6 requires the constant tim e (see
Section 4). Therefore, the procedure SIGMA(oj) can be done in O(n2) time.

4. The procedu re TRANS (o j, x) and its ju stifica tio n

the tim e m om entf i (x) = f i—1(x) + 1 ()— q .N otice, th a tf i—2(x) < f i—1(x) for i = k + 2, k + 3 , . . . , n . Thus, for
the both cases the com pletion tim e of jo b i can be expressed by the formula

p— (fi—l(x)—maxfi—2 (x),ri})

(1)

(2)

Let us describe the procedure TRANS(oj, x) that transform s the schedule oj into the schedule Oj such that jo b k com pletes
the processing at the tim e m om ent rk+ 1 + x, x e [X — S; X]. Three cases may occur, each of them being handled separately.

Би
бл
ио
те
ка

 БГ
УИ
Р

450 I.N. Lushchakova / Discrete Optimization 6 (2009) 446-460

a

machine 1

machine2

k-2 k-1 к

k-1 к

Ri fk-2(X)

b

machine 1

machine2

-s = » -
y Rj+i A,

k-2 k-1 к

k-1 к k-1

Ri
s-1 ^
У Rj+i x

Fig. 4. The transformation of the schedule oj . Case 3a.

The m otivation to each case and the justification of the correctness are done after the procedure.

TRANS (o , x)
(a) If

p
m ax{rk,fk —2 (X)} + - < fk(x) = rk+ 1 + x

q

then do;
a1. Find the value y from the equation

y
X — x +— = y . (3)

q

a2. Transform the schedule oj in the following way. At the time m om ent f k—1 (X) — y interrupt the processing of jo b s
k — 1 and k on machines 1 and 2, respectively, and resume their processing on the opposite machines. Denote the obtained
schedule by o j (see Fig. 4 (a), (b)). Set Ci(<oj) = f i (x), i e Nj.
end;

(b) If

, , 1Л , p — (fk—2(X) — m ax{rk,fk —3(X)}) p
f k—2(X) +--- < f k (x) = rk+1 + x < f k—2(X) +

q q

then do;
b1. Find the value y from the equation:

p — y
f k—2(X) +-----------= rk+1 + x . (4)

b2. Transform the schedule oj in the following way. At the tim e m om ent f k—2(X) — y interrupt the processing of jo b k — 1
on machine 2 and start the processing of jo b k on this machine. At the tim e m om ent f k—2(X) interrupt the processing of
jo b k on machine 2 and resume its processing on machine 1. At the same m om ent resume the processing of jo b k - 1 on
machine 2. Denote the obtained schedule by oj. (See Fig. 5 (a) and (b)). Set Ci(orj) = f i (x), i e Nj.
end;

(c) If

, p ^ f , \ , f /П , p — (fk—2(X) — rk)
rk +-------- < f k(x) = rk+1 + x < f k—2(X) +------------------------------q + - q

then do;
c1. Transform the schedule oj as it was done at Step b2, settingy = f k—2(X) — rk. Denote the obtained schedule by o j (see

Fig. 6 (a) and (b)). -
c2. Find the value x* from the Eq. (4) w ith the fixed value y = f k—2(X) — rk. In other words, find x* from the equation:

rk+1 + x* = f k—2(X) +
p — (fk—2(X) — rk)

q '
(5)

Би
бл
ио
те
ка

 БГ
УИ
Р

I.N. Lushchakova / Discrete Optimization 6 (2009)446-460 451

a
machine 1

machine2

R,-

b
machine 1

machine2

k-2 k-1 к

k-1 к

Ы Х)
Rj+i A.

k-2 к

k-1 к k-1

fk-2(X)Rj У 'K"zvv R j+ ix

Fig. 5. The transformation of the schedule Oj. Case 3b.

a

machine 1

machine2

b

machine 1

machine2

k-2 k-1 к

k-1 к

Rj = Гк у + i

V
X

k-2 к

k-1 к k-1
i
I
I

H - 1
Rj = rk y* fk.2(X) Kj+1

c

machine 1 k-2 к

machine2 k-1 к k-2 k-1

h 1
Rj = Гк у* Rj+i x

Fig. 6. The transformation of the schedule Oj. Case 3c.

Ч -+

c3. Find the value y* from the equation

y*
x * - x + - = y*. (6)

q

c4. Transform the schedule Oj in the following way. At the tim e m om ent f k—2(A) — y* interrupt the processing of jo b s k — 2
and k on machines 1 and 2, respectively, and resume their processing on the opposite machines. After the com pletion of job
k — 2 on machine 2, resume the processing of jo b k — 1 on this machine. Denote the obtained schedule by Oj (see Fig. 6 (b)
and (c)). Set Ci(Oj) = fi(x), i e Nj.

end;
Stop.

The condition of case (a) means that if we start the processing of jo b k at the tim e m om ent m ax{rk, f k—2 (A)}, we can
com plete it by the m om ent rk+ 1 + x. It should be m entioned that rk > f k—2(A) iff Nj = {k — 1, k}. Moreover, we claim that
the following Lemma takes place.

Lem m a 1. I f Nj = {k — 1, k}, only case (a) m ay occur.

Би
бл
ио
те
ка

 БГ
УИ
Р

452 I.N. Lushchakova /Discrete Optimization 6 (2009) 446-460

Proof. Suppose that the inequality

rk + p > fk(x) = rk+1 + x (7)
q +

holds. By definition p = f k (X) —rk — p .Therefore, we get rk+ 1 < rk + p —x = f k(X) — p — x < f k (X) — S —x = rk+ 1 + X — S — x <
rk+ 1, because S < p and x > X — S. Thus, we conclude that for the set Nj = {k — 1, k} the inequality (7) cannot take place. □

The condition of case (b) means the following. If we start the processing of jo b k at the tim e m om ent f k—2 (X), we cannot
com plete it by the tim e m om ent rk+ 1 + x. However, if we start the processing of jo b k on machine 2 at the tim e m om ent
m ax{rk, f k—3(X)} and continue its processing on m achine 1 from the tim e m om ent f k—2 (X), we can com plete it by the m om ent
rk+1 + x .

It should be m entioned that rk > f k—3(X) iff Nj = {k — 2, k — 1, k}. Furthermore, we claim that the following Lemma
takes place.

Lem m a 2. I f |Nj | > 3, only cases (a) or (b) m ay occur.

Proof. Suppose that it is not the case. In other words, suppose that the inequality

f ^ , p — (fk—2(X) — f k—3(X)) ro ^
fk—2 (X) + ------------------------------------ > rk+1 + x (8)

q

holds.
Notice that fk—1 (X) = fk—2 (X) + (p — (fk—2 (X) —fk—3 (X)))/q . Therefore, from (8) we obtain the inequality fk— (X) > rk+ 1 + x

w hich is impossible. So (8) cannot take place if |Nj | > 3. □

From Lemmas 1 and 2 one can easy obtain the following Corollary.

C orollary 1. Case (c) m ay occur only i f Nj = {k — 2, k — 1, k}.

The condition of case (c) means the following. If we start the processing of jo b k on machine 2 at the tim e m om ent rk
and continue its processing on machine 1 from the tim e m om ent f k—2 (X), we will not be able to com plete it by the m om ent
rk+ 1 + x . However, if jo b k starts the processing at the tim e m om ent rk, it is possible to com plete its processing by the m om ent
rk+1 + x .

Consider case (a). Let us explain the Eq. (3) which is connected w ith the transform ation of the schedule oj done at Step
(a2) (see Fig. 4 (a), (b)).

In the schedule oj during the interval (fk—1(X) — y ; f k—1(X)] machine 1 processed jo b k — 1, and the length of this interval
is equal to y tim e units. In the schedule oj during the interval (fk—1(X) — y ; f k—1(X)] machine 1 processes jo b k. The Eq. (3)
expresses the structure of this part of jo b k w ith qy unit processing requirem ent which is the following:

• a part of jo b k w ith q(X — x) unit processing requirem ent which was done in the schedule oj for X — x tim e units on
machine 1 during the interval (rk+ 1 + x, rk+ 1 + X], and is also done for X — x tim e units on machine 1 in the schedule o j;

• a part of jo b k w ith y unit processing requirem ent which was done in the schedule oj for y tim e units on machine 2 during
the interval (fk—1 (X) — y ; f k—1 (X)], and is done for y- time units on machine 1 in the schedule 5j.

As a result of Step (a2) we have f k—1 (x) = f k—1 (X)—y + y q = fk—1 (X)+ q (X —x) a n d fk (x) = f k (X)—y + q = f k (X) — (X—x) =
(rk+ 1 + X) — (X — x) = rk+ 1 + x. The com pletion tim es of the other jo b s from the set Nj do not change, i.e. f i (x) = f i (X) for all
i e Nj \ {k — 1, k}. Notice, that in the schedule oj we have f k—1 (x) = f k—1(X) + q(X — x) < f k—1(X) + qS < f k—1(X) + q * M =

f k—1(X) + M = Rj+1.
Now consider case (b). The Eq. (4) expresses the fact that in the schedule oj obtained at Step (b2) jo b k com pletes the

processing at the tim e m om ent rk+ 1 + x.
It is not difficult to see that in the schedule oj constructed at Step (b2) machine 1 processes jo b k for additional

(fk—1(X) — f k—2(X) — y) / q tim e units instead of processing of jo b k — 1 for f k—1(X) — f k—2(X) tim e units. As a result we
com plete jo b k earlier by X — x tim e units. This fact can be expressed by the following equation:

f m f m f k—1(X) — f k—2(X) — y . , n.
fk—1 (X) — fk—2 (X) -------------------------------------= X — x. (9)— — q

From (9) we easy get

(q — 1)(fk—1(X) — fk—2 (X)) + y = q(X — x). (10)

Using (10), we obtain the expression for the com pletion time of jo b k — 1 in the transformed schedule o j: f k—1 (x) =
f k—2(X) + y + q(fk —1(X) — f k—2(X)) = f k—2(X) + (fk—1(X) — f k—2 (X)) + (q — 1)(fk —1(X) — f k—2(X)) + y = f k—1(X) + q(X — x) .
By the construction f k(x) = rk+ 1 + x. The com pletion times of all other jobs from the set Nj do not change, i.e. f i (x) = f i (X),
i e Nj \ {k — 1, k}. Besides, by the same reason as in case (a) we have f k—1(x) < Rj+1.

Би
бл
ио
те
ка

 БГ
УИ
Р

I.N. Lushchakova / Discrete Optimization 6 (2009) 446-460 453

Finally, consider case (c).
The Eq. (5) expresses the following. In the schedule oj (see Step c1) jo b k starts the processing on machine 2 at the time

m om ent rk. At the tim e m om ent f k—2(X) the processing o fjo b k on machine 2 is interrupted and is resumed on machine 1.
Job k com pletes the processing at the tim e m om ent rk+ 1 + x * .

Notice, that x * > x. Therefore, the transform ation oj ^ oj is not resultant. In the schedule oj we have f k—1(x*) =
fk—1 (X) + q(X — x *), fk (x *) = rk+1 + x * , fk—2 (x*) = fk —2 (X) (see case b).

The Eq. (6) is connected w ith the transform ation oj ^ oj done at Step c4 (see Fig. 6 (b) and (c)).The meaning of the Eq. (6)
can be explained analogously as it was done for the Eq. (3).

In the schedule cij we have f k(x) = rk+ 1 + x by the construction. Further, taking into account (6), we get f k—2(x) =
fi—2 (X)+ (q —1)y* = fk—2 (X)+ q(x* —x) and+k—1 (x) = fi—1 (x*) + (q —1)y* = fk—1 (X)+ q (X —x *)+ q (x * —x) = fk —1 (X)+ q (X —x).

Now let us prove the following theorem .

T heorem 1. The schedu le oj constructed by the procedu re TRANS (oj, x) is the best one am on g all schedu les f o r the b lock (Rj; Rj+ 1]
prov ided th a t jo b k com pletes the processing a t the tim e m om en t rk+ 1 + x.

Proof. Let us consider the increm ent AFk (x) = Fk(x) — Fk(X) o f the function Fk(x) = Yl'k—i f i (x), where x e [X — S; X].
One can see that AFk (x) = q(X — x) for cases (a) and (b).
Recall that it is impossible to decrease the com pletion tim e o fjo b k by X — x tim e units w ithout increasing the amount of

processing done in the block (Rj; Rj+ 1] at least by q(X — x) units. So we conclude, that for the cases (a) and (b) the schedule
oj has the minimal possible increm ent AFk (x) = q(X — x) o f the function Fk (x). Therefore, for the cases (a) and (b) we have
constructed the best schedule among all schedules in which jo b k com pletes the processing by the tim e m om ent rk+ 1 + x.

Further, it is easy to see that forth e case (c) the constructed schedule oj has the increm ent AFk (x) = q(X — x) + q(x* — x),
w here x* is the solution of the Eq. (5).

Let us show that the theorem also takes place for the case (c). Recall that case (c) may occur only if Nj = {k — 2, k — 1, k}.
Denote the processing requirem ents of jo b s k — 2, k — 1 and k in the schedule oj (see Fig. 6 (a)) by p'k_ 2, p'k_ 1 and p k,

respectively. Notice, that p'k—2 < p'k— 1 < pk = p and Vj— = fk —2 (X) — rk.
To prove the theorem , we need to investigate the properties of the best schedule o * for jo b s k — 2, k — 1 and k with

the processing requirem ents p'k_ 2, p'k_ 1 and p k, provided that these jo b s can start the processing no earlier than at the time
m om ent rk and the com pletion tim e o fjo b k is equal to rk+ 1 + x.

Property 1.The schedule o * is a dense schedule.
This means that machines work continuously from the time m om ent rk until each of them com pletes the processing.

Notice that machine 1 has no idle periods in the interval (rk ; rk+ 1 + x].
Property 2. In the schedule o * machine 2 com pletes the processing at the tim e m om ent f k—1(X) + q(X — x).
Indeed, since the com pletion tim e o fjo b k is decreased by X — x tim e units, the amount of processing done in the block

(Rj; Rj+1] increases by q(X —x) units. This additional amount ofp rocessin gcanbe done only on machine 2, because machine 1
has no idle periods during the interval (Rj; Rj+ 1] in the schedule oj. Notice, that in the schedule oj machine 2 com pletes the
processing at the tim e m om ent f k—1 (X). Therefore, in the schedule o * machine 2 should com plete the processing at the time
m om ent f k—1(X) + q(X — x).

Property 3. In the schedule o * the total length of the intervals in which jo b s k — 2 and k — 1 are processed on machine 1

is less than pk—2 .q
Let us show that Property 3 takes place. If jo b k is processed continuously from the tim e m om ent rk and the total length

of the intervals of its processing on machine 2 is equal to pk—1 = f k—2 (X) — rk, it cannot com plete the processing earlier than

at the tim e m om ent f k—2(X) + p—(k—2(X)^rk). However, we have rk+ 1 + x < f k—2(X) + p—(fk—q(x>~rk). So we conclude that in

the schedule o * the total length of the intervals of processing jo b k on machine 2 is less than pk—1 . Moreover, in o * the total

length of the intervals in which jo b k is not processed on machine 1 is also less than pk—1 . It follows that the total length of

the intervals in which jo b s k — 2 and k — 1 can be processed on machine 1 is less than pk—1 .
Property 4. In the schedule o * machine 1 at first processes jo b s of the set {k — 2; k — 1} and then processes jo b k.
The schedule o * has the minimal total com pletion tim e of jo b s k — 2 and k — 1 among all schedules w ith the fixed

com pletion tim e rk+ 1 + x o fjo b k. The speed of machine 1 is greater than the one of machine 2. So it is expedient to process
jo b s {k — 2; k — 1} on machine 1 at the beginning of the interval (rk ; rk+ 1 + x], because in this case it may be possible to
com plete these jo b s earlier.

For further convenience, we denote the interval of processing o fjob s {k — 2; k — 1} on machine 1 in the schedule o * by т.
Property 5. In the schedule o * the com pletion tim e of one jo b from the set {k — 2; k — 1} is equal to f k—1(X) + q(X — x).
Let us show that Property 5 takes place. From Property 3 and Property 4 it follows that machine 1 com pletes the

processing o fjo b s {k — 2; k — 1} earlier than the tim e m om ent rk + pk—1 . W e have rk + pk—1 = f k—2(X) < f k—1(X) <
fk—1(X) + q(X — x). Therefore, at the tim e m om ent f k—1(X) + q(X — x) machine 1 processesjob k. Since accordingto Property

Би
бл
ио
те
ка

 БГ
УИ
Р

454 I.N. Lushchakova / Discrete Optimization 6 (2009) 446-460

2 in the schedule о * machine 2 com pletes the processing at the tim e m om ent f k—1(k) + q(X — x) and machine 1 is busy at
this m om ent, we conclude that the last jo b processed by machine 2 is a jo b from the set {k — 2; k — 1}.

P roperty 6. In the schedule о * jo b k is processed throughout the interval (rk ; rk+ 1 + x].
In other words, we need to show that machine 2 processes only jo b k in the interval т . Assume the converse. Then there

are some subintervals of т during which both machines process jo b s of the set {k — 2; k — 1}. Since machine 2 does not
process jo b k in these subintervals, a greater amount of processing of jo b k will be done on machine 1. As a result, the length
of the interval т will be shorter. However, it is not reasonable.

Indeed, according to Property 5 the com pletion tim e of one jo b of the set {k — 2; k — 1} is fixed. To com plete the other job
of the set {k — 2; k — 1} earlier, we should use machine 1 for its processing as much as possible. From Property 3 we obtain

that the length of the interval т is less than < Pk——1 . So in the interval т machine 1 is used only for the processing of
the jo b of the set {k — 2; k — 1} w ith nonfixed com pletion time, the length of the interval т being as large as possible. This
contradicts our assumption. Thus, in the interval т machine 2 processes only jo b k. After the interval т jo b k is processed
on machine 1. Since the processing requirem ent and the com pletion tim e of jo b k are known, the length of the interval т is
uniquely determined.

Property 7. In the schedule о * jo b s k — 2 and k — 1 are scheduled in the sequence (k — 2; k — 1).
Indeed, in the schedule о * one jo b of the set {k — 2; k — 1} is processed on machine 1 during the interval т and after

the com pletion of this interval continues the processing on machine 2. After the com pletion of this jo b machine 2 processes
the other jo b of the set {k — 2; k — 1} and com pletes its processing at the tim e m om ent f k—1 (X) + q(A — x). To obtain the
minimal total com pletion tim e for the set {k — 2; k — 1} we should schedule these jo b s in the sequence (k — 2; k — 1) because

Pk—2 < Pk—1.
One can easily see that Properties 1 -7 uniquely determ ine the schedule о * which is the same as the schedule <5j

constructed by algorithm for the case (c). This com pletes the proof of Theorem 1. □

Summing up, we should say the following. If Nj = {k — 2; k — 1; k}, the function AFk (x) can have a breakpoint x*.T o find
this breakpoint, one should solve the Eq. (5). In this case we have

A F (x) = fq(X — x) + q(x* — x), ifx e [X — 5, x*),
k() lq (X — x), i f x e [x*, X].

For all other cases we have AFk (x) = q(X — x), where x e [X — 5, X].
Thus, the increm ent AFk (x) is a linear or a piecew ise linear function.

5. C onstruction o f th e fu n ctio n F^(x) = Y?i=kf i (x)

Consider jo b s available not earlier than the tim e m om ent Rj+1. Suppose that jo b k com pletes the processing at the time
m om ent f k (x) = rk+ 1 + x, where rk+ 1 = Rj+ 1 ,x e [X — 5; X]. Recall that we schedule all unscheduled jo b s using the strategy
to com plete each jo b as soon as possible (see Section 3 , formulas (1), (2)).

Let us show how to determine the function F*(x) = £ n=kf (x), x e [X — 5; X], which is used during the transform ation
of the schedule (see the procedure SIGMA(aj) in Section 3).

W e shall use the following data structures:

• A sorted list BREAK which contains endpoints of the interval [X — 5, X] and all breakpoints x 1, x2, . . . , xl—1, x l , . . . o f the
function F* (x) ordered in such way that X — 5 = x0 < x 1 < • • • < xl—1 < xl < • • • < xl; = X. Initially list BREAK contains
only endpoints X — 5 and X of the interval [X — 5, X].

• Sorted lists PHI, PSI, GFATHER, FATHER and SON which determine the current functions «^(x), ^ (x) , f i—2(x), f i—1 (x) and
fi(x), respectively. Each of these lists contains linear functions in the order which corresponds to intervals determined by
points from list BREAK. Initially lists PHI, PSI and SON are empty, list GFATHER contains function rk+ 1 + x, list FATHER
contains function (1 — 1)x + rk+ 1 + p .

• A sorted list TOTAL which determ ines the current value of the function F *(x). This list contains linear functions in
the order which corresponds to intervals determined by list BREAK. Initially list TOTAL contains only one function
(x + rk+1) + ((1 — 1)x + rk+1 + p).

Jobs k + 2, k + 3 , . . . , n are considered consecutively. At each step the current jo b i, k + 2 < i < n, is treated. At first the
contents of lists GFATHER and FATHER are assigned to lists PSI and PHI, respectively.

Let us describe how to obtain the current function ^ (x) = m ax{fi—2(x), ri} and fulfil the appropriate updating of lists
BREAK, PSI, PHI and TOTAL. Since f i—2(x) is a nondecreasing convex function, the following cases may occur:

1. For the branch y = a 1x + b1, x e [x0; x 1) of the function f i—2(x) determined by the first elem ents of lists BREAK and PSI
the inequality f i— 2(x0) = a 1x0 + b1 > ri holds.
W e conclude that f i—2(x) > f i—2(x0) > ri and ^ (x) = f i—2(x) for x e [X — 5; X]. In this case, the updating of lists is not
carried out.

Би
бл
ио
те
ка

 БГ
УИ
Р

I.N. Lushchakova / Discrete Optimization 6 (2009) 446-460 455

2. For the branch y = a l/x + bli , x e [x(—1, x l/], of the function f i—2(x) determined by the last elem ents of lists BREAK and
PSI the inequality f i—2(X) = f i—2(xli) = a^x^ + by < ri holds.

W e conclude that f i—2(x) < f i—2(X) < ri and ^ i(x) = ri for x e [X — S; X]. In this case in list PSI we replace each
elem ent (i.e. function) by ri.

3. The inequalities f i—2(x0) < ri and f i—2 (X) > ri hold.
In this case the system

fy = f i—2 (x),
y = ri, (11)
x e [X — S; X)

has the unique solution, because f i—2(x) is a nondecreasing convex function.
For each branch y = a lx + bi, x e [x—1, x l), 1 < l < l , of the function f i—2(x) determined by lists BREAK and PSI we

consider the following system of linear equations and inequalities:

f y = alx + bl,
y = ri, (12)

[xl— 1 < x < xl.

The system (11) is equivalent to the set of system s of the form (1 2). It follows, that only one system of the form (12) has
the unique solution, while the other systems of this set have no solution. The following subcases may occur.
(i) For some function a lx + bl from list PSI the system (12) has the unique solution x* e (x—1; xl). This means that x*

is a breakpoint for the function ^ (x) = m ax {fi—2(x), ri}. Furthermore, x* will be a new breakpoint for the function
F *(x). In this case let us do the following.

Insert the point x* in list BREAK after the point xl—1. In list PSI we delete the first l — 1 elem ents (i.e. functions)
and then before the function a lx + b l insert l copies of ri. In lists PHI and TOTAL after the l-th elem ent we insert one
additional elem ent which is a copy of the l-th elem ent.

(ii) For some function a x + b l from list PSI the system (12) has the unique solution x* = xl—1.
In this case in list PSI we replace the first l — 1 elem ents (functions) by l — 1 copies of ri.

Analogously we obtain the current function ip^x) = m ax{fi—1(x), ri} and fulfil the appropriate updating of lists BREAK,
PHI, PSI and TOTAL. —

Now form list SON which determ ines the function f i (x). Consider lists PHI and PSI from the beginning to the end. Each
elem ent of list SON (i.e. each branch of the function f i (x)) is obtained by applying the formula (2) to the corresponding
elem ents of lists PHI and PSI (i.e. to the corresponding branches of the functions ip^x) and ^ i(x)).

Finally we update list TOTAL. To each elem ent from list TOTAL we add the elem ent w ith the same number from list SON.
To conclude the step, we delete the contents of list GFATHER and assign to this list the contents of list FATHER. Then

replace the contents of list FATHER by contents of list SON and delete the contents of lists PHI, PSI and SON.
Repeat the described updating of lists for jo b i + 1. W hen the updating of lists for jo b n has been com pleted, stop.
At each step list BREAK is supplemented by no more than one breakpoint. Therefore, by construction F *(x) = Y n =kf i (x),

x e [X — S; X], is a nondecreasing piecewise linear function w ith no more than O(n) breakpoints.
Notice, that at each step the updating of lists is done in O(n) time. Since no more than n jo b s are considered (i.e. no more

than n steps are fulfilled), the construction of the function F* (x) can be done in O(n2) time.

6. The ju stific a tio n o f th e so lu tio n correctn ess

In this section we prove the theorem that justifies Algorithm G.

T heorem 2. Algorithm G gen erates an optim al schedule fo r the Q 2lri, p i = p, pm tn^Y l C problem .

Proof. W e shall prove this theorem by contradiction. The proof is partially based on the schem e developed by Herrbach and
Leung [3].

Consider an instance I w ith the sm allest (in term s of number of distinct release dates) set N = {1 , 2 , . . . , n} of jo b s that
violates the theorem . Suppose that there are z distinct release dates R1 < R2 < ■ ■ ■ < Rz for jo b s of the set N . It is clear that
z > 2. The set N is ordered in nondecreasing order of release dates of jobs.

Let s* be the schedule produced by Algorithm G for the instance I . W e have supposed that s* is not optimal schedule.
W e claim that none of the blocks of s*, except the last one, is scheduled by Rule 1 of Algorithm G. Indeed, if in s* some

block is scheduled by Rule 1, we can easy construct an instance I ' w ith a smaller set N' с N o f jo b s that violates the theorem .
This contradicts the assumption that I has the sm allest set of jo b s violating the theorem .

W e also claim that the block (Rz—1, Rz] of s* is not scheduled by Rule 2 of Algorithm G. Suppose that it is not the fact.
Since the last block of s* has not been transform ed, we can construct an instance I ' w ith a set N' = N of jo b s by letting the
jo b s released at time Rz be released at tim e Rz— 1. The set N' of jo b s is sm aller (in term s of number of distinct release dates)
than the set N . For I ' Algorithm G produces the same schedule s*, while the optimal schedule for I must have the value of

Би
бл
ио
те
ка

 БГ
УИ
Р

456 I.N. Lushchakova / Discrete Optimization 6 (2009) 446-460

the objective function no larger than that for I . Therefore, I ' has a sm aller set o fjob s violating the theorem , contradicting the
assumption that I has the sm allest such set o fjobs.

Thus, there is at least one block in s*, nam ely the block (Rz—1, Rz], that is scheduled by Rule 3.
Consider the structure of the blocks scheduled by Rule 3 in s*. Let Algorithm G construct the subschedule of s* for some

block (Rj, Rj+1] by using Rule 3 (see the procedure SIGMA(oj)), jo b s k + 1, k + 2 , . . . , n being available not earlier than the
tim e m om ent Rj+1 . Recall that jo b k com pletes the processing at the tim e m om ent f k (x) = Rj+1 + x and the com pletion tim es
of all jo b s k + 1, k + 2 , . . . , n are determined by formulas (1).

The following cases may occur:

A. The function A F *(x) — AFk (x), x e [A — S; A], achieves its maxim al value in the endpoint x = X — S. Therefore, the

function Fk (x) + F *(x) = k=i f i (x) + ’i=kf i (x) is increasing on the interval [X — S; X], because A F *(x) — AFk (x) =
F* (X) — F *(x) — (Fk(x) — Fk(X)) = (Fk(X) + F*(X)) — (Fk(x) + F *(x)).

B. The function A F *(x) — AFk(x), x e [X — S; X], achieves its maximal value in the endpoint x = X. In this case the function
Fk (x) + F* (x) is decreasing on the interval [X — S; X].

C. The function AF* (x) — AFk(x), x e [X — S; X], achieves its maximal value in a breakpoint x! e (X — S; X). Then the
function Fk (x) + F* (x) is decreasing on the interval [X — S; x'] and is increasing on the interval [x!; X].

At each step of Algorithm G the number of unscheduled jo b s becom es smaller. So the structure of the blocks scheduled
by Rule 3 will be the following. At first, blocks are situated in w hich the amount of processing was increased by the maximal
value qS (the value S was determined individually for each of these blocks). W e shall call these blocks w ith the maximal
possible amount of processing blocks of the first type. Then these blocks may be followed by a block in which the amount
of processing was increased by the value q(X — x'), where x' e (X — S; X) is a breakpoint of the function AF* (x) — AFk(x).
Finally, there may situate blocks in which the SPT-subschedules w ere not transform ed, because the number of the remaining
unscheduled jo b s was rather small for obtaining a profitable transform ation. W e shall call the blocks in which the assigned
amount of processing is not the maxim al possible amount blocks of the second type.

Let s0 denote an optimal schedule for the instance I. Since s * is not optimal, we have

Let l + 1 , l + 2 , . . . , n (1 < l < n) be the jo b s with the release date Rz. Consider the new instance I w ith the set
JV = {1 , 2 , . . . , l} o fjo b s. Denote s the schedule produced by Algorithm G for the instance I. The structure of the schedule I
is analogous to the structure of the schedule s . However, block z — 1 of s is scheduled by Rule 3 while block z — 1 of Is is
scheduled by Rule 1. Besides, for instance I Algorithm G at each step analyzes additional n — l jo b s (i.e .jobs l + 1 , l + 2 , . . . , n).
So it may occur that for I it is more profitable to do more amount of processing in some block (Rj; RJ+ 1], 1 < j < z — 1, than
for I. Thus, in I the number of the blocks of the first type is no greater than the number of the same blocks in s *. Algorithm
G increases the amount of processing done in each block by means of increasing the loading of machine 2. This leads to the
increasing of the partial objective function. So we have

However, (18) shows that the instance I which has a sm aller set o f jo b s violates the theorem , contradicting the
assumption that I has the sm allest such set o fjo b s. Therefore, the inequality (17) cannot hold.

n n
(13)

i=1 i=1

(14)
i=1 i=1

1. Now assume for the m om ent that

(15)

Let s0 denote an optimal schedule for the instance I. From (15) we have

(16)

Taking into account (14) and (1 6), we consider the following cases.
(a) Suppose that we have

(17)

Then from (16) we obtain

(18)

Би
бл
ио
те
ка

 БГ
УИ
Р

I.N. Lushchakova / Discrete Optimization 6 (2009) 446-460 457

(b) Suppose that we have
l l l

£ q © < £ Q(s0) < £ Ci(s*). (19)
i=1 i=1 i=1

For a schedule s let us denote by a(s) the total tim e of processing the jo b s of the set N = {1 , 2 , . . . , l} on machine 1
after the tim e m om ent Rz. Since in the schedule s * block z — 1 was constructed by Rule 3, in s * machine 2 does not
process the jo b s of the set N5 after the tim e m om ent Rz. Notice, that in s5 machine 2 is idle after the tim e m om ent Rz.
Besides, a(s) > a (s*), because in 5 the block z — 1 was scheduled by Rule 1. The inequality (15) means that in the
blocks 1 to z — 1 the loading of machine 2 in the schedule s0 is less than its loading in s*. Therefore, in the schedule s0
machine 2 does not process the jo b s of the set N = {1 , 2 , . . . , l} after the tim e m om ent Rz, otherw ise one can show
that the schedule s0 is not optimal. Thus, we have

a(s) > a(s0) > a (s*), (20)
because otherwise the inequality (19) is impossible.
i. Suppose that a(5) = a(s0). Consider the schedule s. Taking into account that machine 1 is busy in the interval

(Rz ; Rz + a (s)], let us assign jo b s l + 1, l + 2 , . . . , n for processing from the time m om ent Rz according to the
SPT-rule. Denote the obtained schedule for the instance I by s 1. In fact, the schedule 51 can be obtained during the
construction of the schedule s* by Algorithm G, because the number of blocks of the first type in s (and, therefore,
in s1) is less than the number of blocks of the same type in s*. However, Algorithm G constructed the schedule
s*.Thus, by construction we have

n n
£ Ci(s 1) > £ Ci(s*). (21)
i=1 i=1

Now consider the schedule s0. W e claim that the schedule s0 passes exactly one jo b to block z . Indeed, suppose
that the schedule s0 passes several jo b s to block z .W ithout loss of generality, we may assume that these jo b s were
im m ediately scheduled in block z by the SPT-rule. In this case machine 2 processes these jo b s in block z . However,
as it was discussed above, it is impossible.

Thus, in the schedule s0 the jo b passed from block z — 1 was im m ediately scheduled in block z on machine 1,
followed by jo b s l + 1, l + 2 , . . . , n in a SPT-fashion. Therefore, we obtain

n n
£ Ci(s0) = £ Ci(s1). (22)

i=l+1 i=l+1
Taking into account (2 1), (19) and (2 2), we get

n l n l n
£ Ci(s*) < £ Ci(51) + £ Ci(s1) = £ Ci(s) + £ q f r)
i=1 i=1 i=l+1 i=1 i=l+1

< £ C i (s 0) + £ Ci(s0) = £ Ci(s0),
i=1 i=l+1 i=1

which contradicts (1 3).
ii. Now suppose that

a(s) > a(s0). (23)
Denote u the sm allest number of such block, that its amount of processing in the schedule s differs from the amount
of processing in s0. Beginning from block u, consider how Algorithm G constructs the schedule s*. At each step j of
Algorithm G, j > u, the partial schedule sj for the set Nj o f jo b s is constructed. Now let us take this partial schedule
sj and assign for processing all unscheduled jo b s of the set N using the strategy to com plete each jo b as soon as
possible (see formulas (1)). Denote the obtained schedule by sj. Thus, we get a finite sequence of schedules su,
su+ 1 , . . . , s * such that the following inequalities hold:

n n n
£ Ci(su) > £ Ci(su+1) > • • • > £ Ci(s*). (24)
i=1 i=1 i=1

By the construction we have
a(s) = a(su) > a(su+1) > • • • > a (s*). (25)

From (2 0), (23) and (25) we conclude that there are such consecutive schedules s w, sw+ 1, where w > u, that

a (sw) > a (s0) > a(sw+1). (26)
W ithout loss of generality, we suppose that Algorithm G increased the amount of processing done in the block
(Rw+ 1; Rw+ 2] of s* by the maximal value q5. (If Algorithm G increased the amount of processing for this block by
the value q(X — x '), one can use the analogous reasoning.) According to rem ark (A), the function Fk(x) + F *(x) =

L t ! f (x) + E n=kfi(x), which was analyzed during step w + 1 of Algorithm G, is increasing on the interval [X—5; X].
Notice, that the continuous function f (x) is also increasing on the interval [X — 5; X] and f l(X) = Rz + a(sw),
f (X — 5) = Rz + a(sw+ 1). Due to (26) we conclude, that there exists such point x e [X — 5; X) that f l (x) = Rz + a(s0)

Би
бл
ио
те
ка

 БГ
УИ
Р

458 I.N. Lushchakova / Discrete Optimization 6 (2009) 446-460

and Fk(X — S) + F*(X — S) < Fk(x) + F *(x). The function Fk(x) + F *(x) determ ines the schedule s such that
Q (s) = Rz + a (s0) and

n n

J 2 Ci(s*+ 1) < 1 2 Ci ® . (27)
i=1 i=1

Recall, that s is an optimal schedule for the set JV = {1 , 2 , . . . , l} of job s. Now suppose that all jo b s of the set N are
to com plete the processing by the tim e m om ent Rz + a (s0). By construction the subschedule of s for the set N of
jo b s is an optimal schedule for the instance I w ith this additional restriction. So we have

l l

Ĵ C i® < J2 Ci(s°). (28)
i=1 i=1

Analogously to (2 2), it is not difficult to show that
n n

£ Ci(s0) = £ Q (s). (29)
i=l+1 i=l+1

Taking into account (24) and (2 7)- (2 9) , we obtain
n n n l n

£ c ,(s*) < E Ci(sw+1) < £ Ci(s) = £ Ci(s) + J 2 Ci(s)
i=1 i=1 i=1 i=1 i=l+1

< £ q (s °) + £ Ci(s0) = ± c * s 0),
i=1 i=l+1 i=1

which contradicts (1 3).
Thus, the inequalities (2 0), (19) and (15) are impossible.

2. Suppose that

l l
£ Ci(s0) > £ Ci(s*). (30)
i=1 i=1

From (13) and (30) we have

n n
£ Ci(s0) < £ Ci(s*). (31)

i=l+1 i=l+1

Since in the schedule s* block z — 1 was constructed by Rule 3, in s* machine 2 does not process the jo b s of the set N =
{1 , 2 , . . . , l} after the tim e m om ent Rz. It follows that

a (s0) < a (s*) , (32)

because otherwise the inequality (31) does not hold.
In s* machine 1 has no idle periods in the interval (R1; Rz + a (s*)] because none of the blocks of s * , except the last one,

is scheduled by Rule 1 of Algorithm G. So in s0 it is possible to com plete the processing of jo b s 1, 2 , . . . , l on machine 1
earlier than the tim e m om ent Rz + a (s*) only if machine 2 in s0 is more busy than in s*. The following cases may occur.
(a) The block (Rz—1; Rz] of the schedule s* is a block of the first type. Then according to the structure of s* all blocks 1 to

z — 1 scheduled by Rule 3 are blocks of the first type. W e conclude that in s0 it is impossible to do more processing on
machine 2 in the interval (R1; Rz] than it was done in the schedule s*. On the other hand, the inequality (32) holds.
Therefore, in s0 machine 2 processes jo b s of the set N in block z. W e may assume that s0 passes two or more jo b s to
block z . W ithout loss of generality, we assume that s0 im m ediately schedules these jo b s by the SPT rule in block z,
followed by jo b s l + 1, l + 2 , . . . , n in a SPT fashion.

Denote Ax = a (s*) — a (s0) > 0. Then in s0 machine 2 com pletes the processing of jo b s of the set N no earlier than
at the tim e m om ent Rz + qA x.

Now recall that Cl(s*) = Rz + a (s*) . According to formulas (1), we have

Cl+1(s*) = Rz + ^ — a(s*) + q ,

Ci(s*) = (1 — ^ C—1 (s*) + 1 C—2 (s*) + p , l + 2 < i < n.
\ q j q q

Further, we obtain

C+ . Л > R, + « , «) — Ax) + p - (‘ m — A — qA x)
q

p — a (s *) Ax Ax
= [Rz + a (s) + - -------^ — Ax + — + Ax = Cl+1 (s*) + — ;

V q J q q

Би
бл
ио
те
ка

 БГ
УИ
Р

I.N. Lushchakova / Discrete Optimization 6 (2009) 446-460 459

Cl+2 (s0) = (1 — ^ Cl+1 (s0) + 1 Cl(s0) + p > (1 — ^ (c + 1 (s*) + —)
q q q q

1 1 Ax Ax
+— (c l(s*) — Ax) +— = ((1 —) c l+1(s*) +— c l (s *) +—) + (1 — I ---------------

q q W q J q q) \ q) q q
Ax

= Cl+2 (s *) — — ;
q2

Cl+3 (s0) = (1 -----) Cl+2(s0) +-------Cl+1(s0) +---
q
1\ / * - x \ 1 (* A x\ p ± Ax

> t 1 — 7) (Cl+2 (s*) — - t) + ~ (C+ 1 (s*) + - + p = Cl+3 (s*) + - T ;q 2 q

1 p

q q q3

Cl+4 (s0) = I 1 -----) C+ 3 (s0) +------- Cl+2(s0) +----
q / q q
1 Ax 1 A x p Ax

> t 1 — 7) (Cl+3(s*) + -) + 7 (C+ 2 (s*) — + q = Cl+4(s*) — ;
q q 3 q q4

Therefore, we have

0 (1 1 1 1
Y , C i(s ') > Y 1 Ci(s) + a m q — + q i — + ••• > J 2 Ci(s*),

i=l+1
(33)

i=l+1 i=l+1 '
because A x(1 — + q j — + •••)> 0 .T h e inequality (33) contradicts (3 1).

(b) The block (Rz—1; Rz] of the schedule s * is a block of the second type.
Denote the sm allest number of the second type block in s* by u. Now beginning from block u, transform the

schedule s * in the following way. Consider blocks u to z — 1 consecutively and increase in each of them the amount
of processing by the maximal possible value S (the value S is determined individually for each block). Thus, for each
set Nj o fjobs, u < j < z — 1, we construct the transform ed partial schedule sj.Then we supplement Sj by subschedule
for jo b s of the set N \ Nj, in which these jo b s com plete the processing as soon as possible (see formulas (1)). Denote
the obtained schedule for jo b s of the set N by lij. Thus, we get a finite sequence of schedules s *, su, su+ b . . . , sz—1.

It should be m entioned that Algorithm G does not transform subschedules of s * constructed by the SPT-rule for
blocks u, u + 1 , . . . , z — 1. (Notice, that Algorithm G can transform the subschedule of s * for block u, but for this block
the amount of processing is not increased by the maximal value). This means that it is not profitable to increase the
amount of processing by the maxim al value for each of these blocks. Moreover, for the larger number of a block it is
more unprofitable to increase the amount of processing in this block. So we have

£ Ci(s*) < £ Ci(Bu) < £ Ci(Bu+1) £ C (sz—1) .
i=1 i=1 i=1

Besides, by the construction we have
> a(sIza (s *) > a(su) > a(Su+1) > 1).

(34)

(35)
At first suppose, that in s0 the maxim al amount of processing is done in each block 1 , 2 , . . . , z — 1. Notice, that in
s0 it is impossible to do more processing in the tim e interval (R1; Rz] than it was done in the schedule sz—1. So the
inequality

a (s0) < a(s*—1)
holds only if after the time m om ent Rz machine 2 processes the jo b s of the set NI = {1 , 2 , . . . , l}. However, in this
case we have

n n
£ C,(5z—1) < £ Ci(s0). (36)
i=1 i=1

Combining (34) and (3 6), we obtain
n n n

£ Ci(s*) < £ QCsz—1) < £ Ci(s0)
i=1 i=1 i=1

which contradicts (1 3). Therefore, we have

a (s0) > a(s**—1). (37)
Now suppose that in some of blocks 1, 2 , . . . , z — 1 of the schedule s0 the amount of processing is not maximal. Then
if machine 2 processes the jo b s of the set N = {1, 2 , . . . , l} after the tim e m om ent Rz , the schedule s0 cannot be
optimal, because it is more profitable to do more processing on machine 2 before the tim e m om ent Rz .

Thus, in the schedule s0 machine 2 does not process the jo b s of the set N after the tim e m om ent Rz , and the
inequality (37) holds.

From (3 2), (35) and (37) we conclude, that either there are such consecutive schedules sw, sw+ 1, where u < w <
z — 2 , that +

a(sw) > a (s0) > a(sw + 1),

< <

Би
бл
ио
те
ка

 БГ
УИ
Р

460 I.N. Lushchakova / Discrete Optimization 6 (2009) 446-460

or
a(s*) > a (s0) > a(su).

According to remark (B), the function Fk(x) + F *(x) = Y t—1 f i (x) + X ! n ^ f x) , which can be constructed at step w + 1
(or at step u) of transform ation of s*, is decreasing on the interval [A — 5; X]. (If Algorithm G increased the amount of
processing for block u by the value q(X — x'), one can use rem ark (C) and the analogous reasoning). So we conclude
that there exists such point x e (A — 5; A] that ft (x) = Rz + a (s0) and Fk(X) + F*(A) < Fk (x) + F* (x). The function
Fk (x) + F*(x) determ ines the schedule s such that Q (s) = Rz + a (s0) and

n n

J 2 C i (3 w) < J 2 Ci(s) (38)
i=1 i=1

^or Г ^ *) < Г ^ ® ^ .

Recall, that in the schedules s0 and s machine 2 does not process the jo b s of the set N after the tim e m om ent Rz .
Therefore, the inequality of the form (29) holds. By construction the subschedule of s for the set N of jo b s is an
optimal schedule for the instance I w ith the restriction that all jo b s of the set N are to com plete the processing by
the tim e m om ent Rz + a (s 0) . It follows that the inequality of the form (28) holds. Therefore, from (34) and (38) it is
easy to obtain

£ C i (s *) < it ,Q (s) = £ C i (s) + C i& < £ Q (s0) + Ci(s0) = ± Q (s0),
i=1 i=1 i=1 i=+1 i=1 i=+1 i=1

which contradicts (1 3).
Thus, the inequality (30) is impossible.

Therefore, s* m ust be an optimal schedule. □

A cknow ledgem ents

I am grateful to the anonymous referees for their com m ents that improved the presentation.This research was partially
supported by INTAS, Project 0 3 -5 1 -5 5 0 1 .

R eferences

[1] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approximation in deterministic scheduling and sequencing: A survey,
Annals ofDiscrete Mathematics 5 (1979) 287-326.

[2] P. Brucker, S. Knust, Complexity results forscheduling problems, http://www.mathematik.uni-osnabrueck.de/research/OR/class/.
[3] L.A. Herrbach,J.Y.-T. Leung, Preemptive scheduling of equal lengthjobs ontwo machines to minimize mean flow time, Operations Research 38 (1990)

487-494.
[4] P. Baptiste, P. Brucker, M. Chrobak, C. Durr, S.A. Kravchenko, F. Sourd, The complexity of mean flow time scheduling problems with release times,

Journal of Scheduling 10 (2007) 139-146.
[5] J. Du, J.Y.-T. Leung, G.H. Young, Minimizing mean flow time with release time constraint, Theoretical Computer Science 75 (1990) 347-355.
[6] T. Gonzalez, Optimal mean finish time preemptive schedules, Technical Report 220, Computer Science Department, Pennsylvania State University,

1977.
[7] E.L. Lawler, Recent results inthe theory of machine scheduling, Math. Progr. State Art: 11th Int. Symp.-Bonn(1982) 202-234.

Би
бл
ио
те
ка

 БГ
УИ
Р

http://arxiv.org///www.mathematik.uni-osnabrueck.de/research/OR/class/

