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We examine a generalized Dirac equation for a spin 1/2 particle with anomalous magnetic
moment in presence of an external uniform magnetic field. After separation of variables, the

problem is reduced to a fourth order ordinary differential equation, which is solved exactly
with the use of the factorization method. Generalized formula for the Landau energy levels is
derived. Solutions are expressed in terms of confluent hypergeometric functions. Restriction
to the case of an uncharged spin 1/2 particle with anomalous magnetic moment is performed.
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1. Introduction

Commonly, only simplest wave equations
for fundamental particles of spin 0, 1/2, 1 are
used. Meanwhile, it is known that other and
more complicated equations can be proposed
which are based on the use of the extended sets
of the Lorentz group representations (see [1-16]).
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Such generalized wave equations are used to
describe more complex objects which have in
addition to mass, spin, and electric charge other
electromagnetic characteristics like polarizability
or anomalous magnetic moment. These additional
characteristics manifest themselves in the
presence of external electromagnetic fields. In
particular, within such an approach Petras
proposed a 20-component theory for spin 1/2
particle which after elimination of 16 subsidiary
components turns to be equivalent to the Dirac
particle theory modified by the presence of
the Pauli interaction term. In other words,

this theory describes a spin 1/2 particle with
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anomalous magnetic moment.

In present paper, we investigate solutions
of such a wave equation in the presence of
an external uniform magnetic field. Generalized
formulas for the Landau energy levels are
derived, and corresponding wave functions are
constructed. Restriction to the case of the neutron
(uncharged spin 1/2 particle with anomalous

magnetic moment) is performed.

2. Dirac equation in cylindrical
coordinates, separation of variables

We use the known representation for the
vector-potential of a uniform magnetic field: A =
% cB xr, B=(0,0,B). After transformation to
cylindrical coordinates we get

Ay=0, A, =0, A, =0, Ay =—Br?/22.1)

a non-vanishing component of the
electromagnetic tensor is Fy. = Br. We
consider the Dirac equation in the magnetic field
(2.1), using the tetrad formalism [17, 18| for the

cylindrical coordinates x® = (t,r;, ¢, 2):

dS? = dt? — dr? — r?2 d¢p?® — d2? ,

100 0
4 010 0
\ 2.2
@@ =100 1/ 0 (22)
000 1

The generally covariant tetrad Dirac equation 18]
reads

Cls B 1 ab _ E — —
{7 [zh(e(c)ﬁﬁ + 50 Yabe) CAC] mc} ¥ =0,
(2.3)

where 7. are the Ricci rotation coefficients:
Yoac = —Yabe = _e(b)ﬁ;ae(ﬁa)e?c)u Ay = e(ﬁa)Aﬁ
are the tetrad components of the 4-vector Ag;
0% = 1/4(y*y® — 4*4?) are generators for the

bispinor representation of the Lorentz group.

We use the shortening notation: e/ch =
e, mc/h = M. The Dirac equation takes the

form (with ¥ = ¢//r):
n eBr
2

0
—|—i73% — M] e=0. (24)

.00 .0 10
Z'yoa_k'l'ylg +’)/2 (T‘(b

We search solutions in the form

fi(r)
_ L —iet_im¢ jikz fa(r)
T T s |
fa(r)
1
0
+670+i71§—72u(7”)—k’)/3—M ;z =0
Ja

where p(r) = m/r — eBr/2; further we use the
shortening notation eB = B. When choosing
the Dirac matrices in the spinor basis, we find the
equations for four functions f,(¢, 2):

(cZ”+M> fa+ikfs+i(efs — Mfy) =0,
(jr —Iu,> f3 —ikf4+i(€f4 _Mf2> =0,

<ddr —|—/.L> f2 —|—2k’f1 — i(efl - Mf3) =0,

(jr — M) fi —ikfa —i(efe — M fy) = 0.(2.5)

These equations are consistent with the linear
constraints fs = Afi, fi = Afs, if the following
condition is imposed

M
E——=—€+MA =

A
€+ Ve — M?
-

A=A = (2.6)
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As a result, the problem is reduced to the system
of two equations

<$+M> fo+i(k—e+ MA)f =0,

<jr - u) fiti(=k—e+ MA)fo=0. (2.7)

In accordance with (2.6), we have two types
of states:

AM = e+Ve2 — M? | (Ve —M?=p)

(;fﬁr u) fo+i(k+p) f1=0,

(;i—#) fi—i(k—p) fa=0; (2.8)

AM = e—+/e2 — M? | (Ve —M?=p)

(4 0) 2+iti-p) fi=0.
<$— M) fi—i(k+p) f2=0. _(29)

For definiteness, we follow the variant (2.8).

3. Solving the equation in -

variable

From (2.8) we obtain the second order
equation for Rj

m B m  Br\?2
Sy D (2= 22
T‘2+2 ( >+

d’R;
dr?

(3.1)

where \? = €2 — m? — k2. Parameter \? describes
the contribution of the electron transversal
motion to the total energy, this part of the energy
is quantized. Note that we have diagonalized the
operator

.0
—za—(b\I/ =mV, (3.2)

which represents the third projection of the
total angular momentum of the Dirac particle in
cylindrical tetrad basis:

.0
<_28¢ + E3) \IlCart =m \I]Cart (33)

Y3 is the third projection of the spin; for m
only half-integer values m = +1/2, £3/2,... are
permitted.

We turn to eq. (3.1) and introduce the
variable © = Br?/2, the equation becomes
(without loss of generality, we assume that the
parameter B is positive)

d*R; dR;

T el (3.4)

4
j dx? dx

1— 2\2
+<M—x—l—l+2m+>R1:0.
T B

We  seek solutions in the form R;(x) =
2Ae~CTR(x). If A, C are chosen according to A =
m/2, (1 —-m)/2, C = £1/2, the equation for R

reads
d’R 1 dR
° it 294 4 = _ &t
T T < 3 x> dx

m A2
_<A_2_m£>R_m

which is the confluent hypergeometric equation

zY' '+ (y—2)Y —aY =0,
m A 1
=A-——-— =2A+ —.
“ 5 2B TS
To obtain solutions which vanish at the origin r —
0 and in the infinity r — oo, we must take C' =

+1/2 and positive values for A

m=+41/2,43/2,..., A=m/2,
A=
m=-1/2,-3/2,..., A=(1—-m)/2.
To obtain polynomials, we impose the known
restriction « = —n, n = 0, 1, 2, .... This
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leads to the following quantization rule for the
parameter \2:

A2 m
— =A—-— .
2¢B3 y "
Depending on the sign of the quantum number m
we get two formulas for A2 = €2 — M? — k%

m>0, XN=2Bn,n=0,1,2,..;

1
m<0, M\ =2B (n—m+2>. (3.5)

4.  Accounting of the anomalous
magnetic moment

The Dirac equation for a particle with
spin 1/2 and anomalous magnetic moment in
the Riemannian space-time (using the tetrad
formalism) can be presented in the form [12, 13]

1
(et 05+ o) (4.1
e 2e Mc
— DA — i goB _ A
hcAc ] ZAM020 () Fop(x) - } U=0.

Physical dimensions of the parameters in the
equation are as follows

-

) ) -

so that the free parameter A is dimensionless.

Consider this equation in the above used magnetic
field. In view of identities

0P (2)Fop(z) = 20°" Fy = iy*y'B = iBY;3
instead of (2.4) we get more general equation
0 0 i0y eBr
oY 1Y 2 (e | DT
W@t_‘_war—’_’y (T‘ * 2)

0 2eB Me

. 3

9 S - = Slp=0. (4.2
T T A M h]gp 0. (42)

Substitution for the wave function is the same as
above

fi(r)
fa(r)
IS5 — M =0 (4.3)
N
fa(r)
where we use the notation
m  eBr 2eB
_— A—s r
r 2 = ulr), ME
Mec €
— M, — . 4.4
- — M, e — ¢ (4.4)

Further we get four radial equations

|
.

+u)f4+(6+k)f3+(F—M)f1:0,

—M> fat+(e—=k)fa— T +M)fs =0,

s

|
S~ 52 Fa

+u> fo+ (e~ K)fu 4+ (D= M)fs =0,

| =

+i

=
3

—u) fit e+ k) fa— (D + M) fy = 0.

Let us try to impose linear constraints (see
the case of the ordinary Dirac particle): f3 =
Afy, fa = Afs, then the equations take the form

+u)f2+[e+k+(r_AM)] fi=0,

(4
(e a5
(s

3

A

3

ISP

+z’(dr—u)f1+[e+k—(F+M)A]f2=0.

In the system (4.5), the equations 1 and 3,
as well as equations 2 and 4 will be the same, only
if the following identities are valid

(C = M)

e+ k+ 1

=—le—k+ T -M)A],
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e —k— (I'+ M) — e+ k— T+ MA; Thus, we need to examine the system of four

A equations in a different way.

so that they can be rewritten as:

1
2e=(M-T)(A+—), . . .
A 5. Solving the radial equations
1
2¢e= (M +T)(A+ Z) : (4.5)
These equations can be represented in the
Obviously, this system is not consistent. form of two linear sub-systems

J

(F—M)f1+(€+k)f3=i<d+u) fa=1Dy fy,

dr
(e~ k)i + (= M) fy = —i (j n M) foZ Dyt (5.1)
N (. L)
(6 + k)fQ — (F + M)f4 = — <% — ,u) fi=—iD_f1. (5.2)
Their solutions are as follows:
e+ RDfo+ (C=MDyfi (D= M)Difot(c—k)Difs
fl =+ (F — M)2 _ (62 ) | k‘2) ) f3 = —1 (P — M)2 — (62 _ ]C2> ) (53)
_(e=k)D_fi =(P+M)D_f3 T+ M)D_fi + (e+k)D_f3
L A e s AN P (g & (5.4)
We note two identities
d d d? ,
D+D72(5+M)(5— ):W_M -,
d d d?
DDy = (o =i +p) =5+ —p. (5.5)
Substituting the expression (5.3) into equation (5.2), we get
 C-MD.D.fy _ (c—=K)D_D.f;
_(F + M)f2 + (6 - k)f4 - (F — M)2 — (62 — k2) (F — M)2 — (62 _ k2> )
 (+BD.D.fy _ (T-M)D_D,fy
+(€+k)f2_(F+M)f4_ (F—M)2—(€2—k‘2) (F—M)Q—(EQ—kQ) . (56)
By combining equations (5.6), we obtain
1 d? ,
f2:721“(e+k:) (FQ—M2—/€2+62+er+M—M2>f4, (5.7)
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and then we derive the 4-th order equation for the function fy4

d*fy B, 2 2 2, 2 m(m+1)] d?fy
-7 [27” —B@2m—-1)—2(T" - M*—k“+¢€)+2 2 02
g2 gmm A D]
rd dr
B* B2
—|—[—167”4+4(B(Qm—1)+2(F2—M2—k2+62))7“2

B2
—B(2m—1)(r2—W—i<:2+62)—(F2+M2+l~c2—62)2+4F2M?—Z (6m* —2m — 1)

+m(m+1) (B2m—1)+2(T*-M?*-k*>+¢€)) m(m—2)(m+3)(m+1)

r2 B r4 fa=0.
(5.8)
Similarly, we can find the expression for fy
f4:¥ F2—M2—k2+e2+d—2+;/—,u2 f2 (5.9)
2T (e — k) dr? ’ '
and then derive 4-th order equation for the function f:
d'f B , 2 22, 2 m (m+1)] d*fo
+ —B2r+4M dfz2 B—4r4—B—2 (B2m—1)+2(I? — M? — k* + %)) r’+
73 dr 16 4
e?B?
+B(2m—1)(T? = M? — k> + ) + ([? + M? + k? — )2 —4T2M* + (6m?—2m—1) —
m(m+1)(B2m—-1)+2T? - M?—k*+€*)) m(m—2)(m+3)(m+1)
% 5 + 7 fa=0.
r r
(5.10)

We note that the equation for fo and f4 are the same. Therefore it is sufficient to consider one of
them. To study the arising equations (5.8) and (5.10), we use the factorization method:
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d? P R d? Qz

fr)=—5+ R’ + Pt 5. G0 =25+ Qu + Qi+ 3 (5.11)

Calculating the operator Fy and comparing with (5.10), we find two sets of coefficients:

1
1) PO:—ZBQ, Py=-m(m+1),
P =B (m—1)+F2—M2—k2+62+2F\/62—k2,
Qo=--B%, Q2=-m(m+1),

1
Q=B (m—2>+1“2—M2—k2+62—2F 2 —k2;
and

2) Py=--B*, Ph=-m(m+1),

1
P =B <m—>+F2—M2—k2+62—2r\/62—k2,

2

1
QOZ_ZB27 Q2:_m(m+1)7

1
Q=B (m—2> +T2 - M?— k2 4+ 2420V e — k2.
Thus, we are to solve twoequations (they differ only in the sign of I)

2 BZZ 1
<d—i+B<m—2>+F2 — k24 2TVe — k2 — m+ ))fzo,

dr? 4
(5.12)
&  B*? 1 9 9 19 5 m+ m(m+1)
W—T-i-B m—5 +T2 - M? - K+ - 2TV —k g=20.
(5.13)
Consider the first equation (5.12). We turn it to the variable z = Br?/2:
d27f+1ﬁ T ATVE2 — k2 + (2m — 1)B +2(T% — M? — k% + €%) _Im(m+1) F=0
dz?  2dux 4 4B T -
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We build the solutions in the form:

f=a%"F,
d*F 1 dF 1
-+ (=+2a+2z) — |(0®-=
xdm2+<2+ a+ bx) . Kb 4) xr+

+2Bb(4a+1)+4I‘\/e2—k:2+(2m—1)B—|—2(I‘2—M2—/~c2+62)

4B
+1 (2a +m) (2a—m—1)] F o0
4 T
If a, b are chosen as
m 1 m 1
=——, -4+ — =—— 14
a 2 9y 2 + 2 ? b 2 9 (5 )
the equation is simplified
d’F (L4 dr
T —s = a—x) —
dz? 2 dx
B(da+1)—4TVe2 —k2 —(2m —1)B -2 (% — M2 — k% + %) F_o
4B -
and it is the equation for the confluent hypergeometric functions with parameters:
B(da+1)—4TVe2—k2—(2m—1)eB —2(T? — M? — k? + € 1
o (4a+1) € (TZB )e ( +6)’7:§+2a' (5.15)

To get solutions that correspond to bound states, we should use the positive values of the parameter
a and the negative values of the parameter b (for definiteness we assume that B > 0):

1
a:—m, (m <0); a="14->0 (m >0). (5.16)
2 2 2
Conditions of terminating the hypergeometric series to polynomials & = —n (introducing the

notation €2 — k% = \):

B(4a+1) —4TVA— (2m —1)B —2(T% — M?) — 2) _

— 1

1B n (5.17)

gives the quantization rule for the energy values:
1 m M?-TI? r'va
“toTet T T B Tap
SO we obtain

1

(VA+D? =N, N=M?+2B(a+5 - T +n) = A=(VN-I)?>0. (5.18)
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From (5.18) we find the formula for the allowed values of A

2
1
62—k2:<\/M2+2B(a—|—2—ﬂ;+n)—I‘> . (5.19)

Depending on the sign of m, we obtain two formulas:

2
1
m < 0, a:—%, 62—k2—<\/M2+QB(2—m+n)—F>; (5.20)

, E2—k2= (\/M2 Y 2B(1+n) — r)2. (5.21)
This, we have two possibilities for quantization

I, A=(VN-D1)?, II, A=(/N+D)?. (5.22)

So, the particle with anomalous magnetic moment has two series of the energy levels, formally differing

in sign of the parameter I'.

6. Further analysis of the solutions

Let us consider the function f2(r) as the primary one. Obtained above ratios allow us to calculate
other three functions. We start from the explicit form of the function fs5, which reads

fo= a:ae_x/QF(a,'y, x), (6.1)
where the parameters are given by

1 m M?2-T2 TV)x )\ 1
¥=ats g 2B B o v T gtea (6.2)

The function f4 can be found according to the following relationship:

1
f4:<F2—M2—k2+62+—

& mm+1) B@2m-1) B%,
+ — ) f2s
2T (e — k) dr? 72 2 4

so after transformation to the variable = we get

2B 2 1d A O M2-T2 m 1 mm+1 1
f4 < ( ) $>f2

ek \"de? "2dz 2B 2B 2 1 Iz
Given the identities

LA M2—F2+m L a ! I'vA
2B 2B 2 4 "TYTyT B

Nonlinear Phenomena in Complex Systems Vol. 19, no. 2, 2016



162 E. M. Ovsiyuk, V.V . Kisel, Ya. A. Voynova, O. V. Veko, and V. M. Red’kov

the above relation can be written as

2B 2 1d 1 TVA mm+1) 1
_21“(e—k)< +-—4+n+a+-— - 1 fa.

Ja Yi2 T 2dr 1~ B Az

Depending on the values of the parameter m, we have two different cases:

1
A) /]’n<07 a:—%7 f2:m—m/2e—x/2F(—n,—m+§,JJ),
B +1+M?—r2 IRV )
a=mry 2B B 2B v 7T Moo

fa

:m +-——4+n—-—=4+- - -

2B mdi 1d m 1 TVA mm+1) x f
de? ' 2dx 2 "4 B 4 4 )%

1
\f)\:\/M2+QB(2—m+n)—F;

1 3
+ 57 f2 y— m(m+1)/2€_$/2F(_na m 4+ 5? l’) 9

VA=+VM2+2B(1+n)-T.

Using the relations (6.5) and (6.6) we find the expression for function fy:
variant A,
VA

1 A
m <0, fa=— 2T P (—n, —m 4+ 2, x) = — VA
e—k 2 e—k

fa(z),

variant B,

m > 0, f4 — _e\iXk x(erl)/QefI/QF(_n’m + ;,1‘) = —E{ijb(m) .

(6.6)

(6.7)

(6.8)

Changing in these formulas the parameter I' on —I", we obtain the relations describing the second

series of states. It is not difficult to calculate the explicit form of the other two functions f1, f3; here we

omit the details.
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7. The case of an uncharged particle
Now let us consider in detail the special case of an uncharged particle with anomalous magnetic

moment (neutron). After applying the above factorization method we get the following 2-nd order
equations:

(j;+(\/e2k2+r)2M2W>f:o,

<$+(M—F)2—M2—W>gzo. (7.1)

The general solutions have the form

F) =V (Fusajol@) + Yoao(@) . @ = (V@ =241 = M2 7
9(r) =V (Jms172y) + Yor12(y \/ Ve—&k2 -T)2 - M?r. (7.2)

So we obtain the solutions of the Dirac equation with cylindrical symmetry which are similar to
ordinary cylindric waves but with one change in parameters:

2
oM — ( ez—inP) — M2, (7.3)

We can consider the function fo(r) = f(r) as the main one (transition to fo(r) = g(r) is reached
by the formal change I' = —T'). Then the above written relations permit to find three remaining ones

1 d? m m
=— (12— — k2 S
Ja 2F(e—k)( +e+ 5 )fg,

Ja= \f[ Im1/2(@) + Yip1p2(2)] = kf(T)
e+ k K24+T+M
\/ ki \/714:21F+M VT [ Te1y2() + Y1 2(2)]
Ve —k24+T+M
f3= \/MiFjLM VT [Tn—1y2(@) + Y1 j2(2))] (7.4)

Nonlinear Phenomena in Complex Systems Vol. 19, no. 2, 2016
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As one can see, the only qualitative manifestation of the neutron anomalous magnetic moment

is the deformation (space scaling) of its wave function in comparison with a particle without such a

moment.

8. Conclusion

We examine a generalize Dirac equation
for spin 1/2 particle with anomalous magnetic
moment in the presence of an external uniform
magnetic field. After separation of variables,
the problem is reduced to the 4-order ordinary

(

differential equation, which is solved exactly with
the use of the factorization method. A generalized
formula for the Landau energy levels is found.
Solutions are expressed in terms of the confluent
hypergeometric functions. Restriction to the case
of neutron is performed.
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