где $w(\cdot)$ – весовая функция признакового окна; $G = W'(\cdot)$ – градиент функции фильтрации признакового окна; $\|\cdot\|$ – квадрат евклидова расстояния между координатами цели и пикселей в пределах признакового окна; h – радиус функции фильтрации.

5.3. Проверка условия окончания цикла оценки средневзвешенного смещения.

Производится проверка выполнения условия на минимальное значение средневзвешенного смещения и предельное количество итераций.

6. Предсказание нового масштаба и позиции цели.

Производится вычисление моментов нулевого и первого порядков, на основании которых осуществляется предсказание позиции и размеров цели на следующем кадре видеопоследовательности.

В результате выполнения алгоритма для каждого кадра видеопоследовательности определяются координаты центра признакового окна, в котором обнаружена цель или принимается решение об отсутствии цели в кадре.

Достоинствами предложенного алгоритма является адаптивность к изменению размера и формы цели, недостатками – достаточно высокая вычислительная сложность, определяемая размерами признакового окна и гистограммы. Одним из способов уменьшения вычислительной сложности (до 330 раз) является использование ковариационных признаков, которые позволяют рассчитывать весовые функции только для пикселей вдоль вектора смещения, а не всего признакового окна.

Список литературы

1. Comaniciu D., Ramesh V., Meer P. // IEEE Trans. on Pattern Analysis and Machine Intelligence. 2003. Vol. 25, N. 5. P. 564–577.

УДК 621.391

САМООРГАНИЗУЮЩАЯСЯ ЦИФРОВАЯ СИСТЕМА ПОГРАНИЧНОЙ РАДИОСВЯЗИ

С.Л. ЖДАНОВ, И.И. ЗАБЕНЬКОВ, Н.Н. ИСАКОВИЧ, Д.А. ЕНЬКОВ, Н.А. МЕЖЕНИН

Белорусский государственный университет информатики и радиоэлектроники ул. П. Бровки,6, г. Минск. 220013, Республика Беларусь zabenkov@bsuir.by

В работе рассматривается вариант построения самоорганизующейся квазисинхронной системы радиосвязи. Отличительной чертой подобных систем является то, что связь по всей зоне действия осуществляется на одной и той же частоте. Это исключает необходимость выбора канала в разных частях зоны. Квазисинхронные системы решают проблему недостаточности частотного ресурса.

Ключевые слова: самоорганизующиеся системы, радиосвязь.

При решении задачи обеспечения радиосвязи на больших территориях обычно используются транкинговые системы связи, стоимость которых достаточно велика. В частных случаях возможно недорогое, но качественное решение проблемы – использо-

вание самоорганизующихся квазисинхронных систем радиосвязи. Главной отличительной чертой подобных систем является то, что связь по всей зоне действия осуществляется на одной и той же частоте, что исключает необходимость выбора канала в разных частях зоны. Используя одну и ту же частоту, квазисинхронные системы также решают проблему недостаточности частотного ресурса. Появление современных квазисинхронных систем стало возможным благодаря новым разработкам в области цифровой обработки сигналов, которые позволили автоматизировать трудоемкий процесс настройки системы в областях перекрытия зон работы отдельных передатчиков.

Система радиосвязи предназначена для организации линейной радиосвязи между пограничными заставами, расстояние между которыми гораздо больше зоны радиопокрытия одной радиостанции, и должна обеспечивать связь в цифровом режиме (с радиостанциями комплекса «Цифра») и в аналоговом режиме (с радиостанциями старого парка). Структурная схема системы состоит из цепочки линейных ретрансляторов, расположенных в виде ломаной линии большой протяженности и обслуживающих в своих зонах абонентских радиостанций. А1-1... А1-m; А2-1... А2-k; ...; А8-1... А8-j (в возимом и портативном вариантах. Она предназначена для радиопокрытия участка одной заставы связью портативных радиостанций с диспетчерской радиостанцией, устанавливаемой в расположении объекта, и организации линейной радиосвязи, которая обеспечивает связь в цифровом режиме между возимыми (автомобильными) и портативными радиостанциями и центральной диспетчерской станцией через ретранслятор (с временным разделением режимов прием/передача).

Связь между двумя цифровыми абонентами возможна только в зоне радиопокрытия одного ретранслятора. Центральная станция (ЦС) роль ретранслятора не выполняет, поэтому организация связи между абонентами, находящимися в пределах одной объекта, но в зонах радиопокрытия разных базовых ретрансляторов (БР), не производится.

Возможна непосредственная связь между абонентскими радиостанциями в цифровом режиме (без ретрансляторов). Возимые и портативные радиостанции обеспечивают одинаковые виды работы. Вызов, осуществляемый по номерам, может быть как индивидуальным, так и групповым, как на участке своего объекта, так и на участке удаленного объекта (при нахождении в зоне радиопокрытия линейных ретрансляторов (ЛР)). Список вызываемых абонентов портативной радиостанции заносится в память при конфигурировании и настройке радиостанции.

Система связи является адресной - каждому абоненту системы присваивается номер. Полный номер абонента включает в себя номер объекта (три цифры от 101 до 899), и собственно индивидуальный номер абонента на участке данного объекта (2 цифры от 01 до 98; абонентский номер 99 всегда присваивается центральной станции объекта). Для обеспечения возможности группового вызова на участке объекта допускается организация до 10 групп, в каждую из которых может быть включено до 10 абонентов. Центральная станция объекта содержит список зарегистрированных абонентов, в соответствии с которым и дает разрешение БР на ретрансляцию.

Для соединения с ЦС на аналоговом канале абонентская радиостанция переключается в нужный режим на канал аналоговых связей Для связи радиоабонентов между собой на канале автономных связей абонентская радиостанция переключается в нужный режим на канал автономных связей. Необходимые режимы работы и каналы связи назначаются при программировании радиостанций. При установлении соединения вызывающим абонентом БР на аналоговом канале автоматически сообщает ЦС параметр качества сигнала абонента, поэтому, при нахождении абонента в зонах радиопокрытия нескольких БР одновременно, ЦС выбирает из них только одну, и на цифровом канале дает разрешение на работу ретранслятора.

При вызове с ЦС подвижного абонента оператор ЦС может указать принудительно номер ретранслятора, через который необходимо осуществить связь. У абонента возимой радиостанции есть возможность не использовать алгоритм автоматического определения активного ретранслятора по уровню сигнала, а указать желаемый ретранслятор принудительно Линейная связь осуществляется посредством цепочки линейных ретрансляторов (ЛР) и предназначена для организации радиосвязи между абонентами удаленных объектов, находящихся в зонах покрытия их ЛР. В системе реализуется связь с использованием до восьми ретрансляций. В системе также обеспечивается возможность использования дополнительных ретрансляционных пунктов (подвижных ретрансляторов) для расширения зоны радиопокрытия ЦС объекта за пределами ее участка.

Линейные ретрансляторы содержат списки номеров соседних объектов с указанием частот каналов ретрансляторов. Ретранслятор (1-й в организуемой цепочке), получивший вызов с информацией о соединении дает вызывающему абоненту подтверждение о принятии вызова и переводит радиостанцию абонента на свой линейный цифровой канал, после чего передает информацию о вызове 2-му на маршруте ретранслятору на его частоте согласно таблице маршрутов. Второй ретранслятор дает первому подтверждение приема вызова, переводит первый ретранслятор на свой линейный цифровой канал и передает информацию о вызове третьему ретранслятору на его частоте согласно таблице маршрутов и так далее. Последний в маршруте ретранслятор возвращает по линии ретрансляторов подтверждение о приеме вызова и информацию о вызове абонента. Радиостанция вызываемого абонента переходит на цифровой канал линейной радиосвязи и дает подтверждение приема вызова, которое ретранслируется вызывающему абоненту и идентифицируется всеми радиостанциями, участвующими в соединении как завершение вызова, и переводит радиостанцию в разговорный режим.

Радиосистема прошла испытания на одной из пограничных застав республики.