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Abstract: Some results concerning almost hyperHermitian structures are considered, using the

notions of the canonical connection and the second fundamental tensor field h of a structure on

a Riemannian manifold which were introduced by the second author.

With the help of any metric connection ∇̃ on an almost Hermitian manifold M an

almost hyperHermitian structure can be constructed in the defined way on the tangent

bundle TM. A similar construction was considered in [6], [7]. This structure includes

two basic anticommutative almost Hermitian structures for which the second fundamental

tensor fields h1 and h2 are computed. It allows us to consider various classes of almost

hyperHermitian structures on TM. In particular, there exists an infinite-dimensional set of

almost hyperHermitian structures on TTM where M is any Riemannian manifold.
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1 Some remarks on almost hyperHermitian structures

10. Let (M , J , g) be an almost Hermitian manifold i.e. J2 = −I and g(JX, JY ) = g(X,

Y ) for X, Y ∈χ(M), where g is a fixed Riemannian metric on M . For any Riemannian

metric g̃ on M such a metric g is defined by the formula

g(X, Y ) = 1
2
(g̃(X,Y ) + g̃(JX, JY )), X, Y ∈χ(M).

Let ∇ be the Riemannian connection of the metric g. Then one can define a connection

∇̄ on M by
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∇̄XY =
1

2
(∇XY − J∇XJY ) = ∇XY +

1

2
∇X(J)JY, X, Y ∈ χ(M). (1)

The connection ∇̄ is called the canonical connection of the pair (J , g), or more

precisely of the corresponding G-structure, where G = U(n), [2]. In particular, ∇̄g= 0,

∇̄J= 0.

The tensor field h is called the second fundamental tensor field of the pair (J , g) [2],

where

hXY = ∇XY − ∇̄XY = −
1

2
∇X(J)JY =

1

2
(∇XY + J∇XJY ), X, Y ∈ χ(M); (2)

hXY Z = g(hXY, Z) = −hXZY . (3)

In particular, the classification given in [3] can be rewritten in terms of the tensor field

h, [2]. Let dim M ≥ 6 and 2β(X) = δΦ(JX ), where Φ(X, Y ) = g(JX, Y ). Then we have

Class Defining condition

K h= 0

U1=NK hXX= 0

U2=AK σhXY Z= 0

U3=SK∩H hXY Z– hJXJY Z= β(Z) = 0

U4 hXY Z = 1
2(n−1) [<X, Y >β(Z) – <X, Z>β(Y ) – <X, JY >β(JZ ) +

+ <X, JZ>β(JY )]

U1⊕U2=QK hXY JZ = hJXY Z

U3⊕U4=H N(J) = 0 or hXY JZ= – hJXY Z

U1⊕U3 hXXY – hJXJXY = β(Z) = 0

U2⊕U4 σ[hXY JZ– 1
(n−1)<JX, Y >β(Z)] = 0

U1⊕U4 hXXY = – 1
2(n−1) [<X, Y >β(X) – ||X||2β(Y ) – <X, JY >β(JX )]

U2⊕U3 σ[hXY JZ + hJXY Z ] = β(Z) = 0

U1⊕U2⊕U3=SK β = 0

U1⊕U2⊕U4 hXY JZ– hJXY Z = 1
(n−1) [<X, Y >β(JZ ) – <X, Z>β(JY ) +

+<X, JY >β(Z) - <X, JZ>β(Y )]

U1⊕U3⊕U4 hXJXY + hJXXY = 0

U2⊕U3⊕U4 σ[hXY JZ + hJXY Z ] = 0

U No condition

Table 1

20. We consider an almost hyperHermitian structure (ahHs) on a manifold M

consisting of (J1, J2, J3, g), where J2
i = −I, J1J2 = −J2J1 = J3, g(JiX, JiY ) = g(X,

Y ), i= 1, 2, 3. Unauthenticated
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For any Riemannian metric g̃ such a metric g can be defined by the formula

g(X, Y ) = 1
4
(g̃(X,Y ) + g̃(J1X, J1Y ) + g̃(J2X, J2Y ) + g̃(J3X, J3Y )), X, Y ∈χ(M).

If ∇ is the Riemannian connection of the metric g, then the canonical connection ∇̄

in the sense of [2] of the ahHs has the following form

∇̄XY =
1

4
(∇XY − J1∇XJ1Y − J2∇XJ2Y − J3∇XJ3Y ), X, Y ∈ χ(M). (4)

In particular, ∇̄g= 0, ∇̄Ji= 0, i= 1, 2, 3.

Proposition 1.1. Let (M , J1, g) be a Kaehlerian manifold i.e. ∇J1= 0 on M. Then the

connection given by (4) coincides with those defined by (1) for (M , J2, g) and (M , J3,

g). In particular, the second fundamental tensor fields of (M , J2, g) and (M , J3, g) are

the same.

Proof.

∇̄XY =
1

4
(∇XY − J2

1∇XY − J2∇XJ2Y − J1J2∇XJ1J2Y ) =

=
1

4
(2∇XY − J2∇XJ2Y − J1J2J1∇XJ2Y ) =

=
1

2
(∇XY − J2∇XJ2Y ) =

=
1

2
(∇XY − J3J1∇XJ3J1Y ) =

=
1

2
(∇XY − J3∇XJ3Y ).

�

To illustrate the situation described in proposition 1.1 we consider the following exam-

ple.

Example 1.2. Let (M , J , g) be an almost Hermitian manifold and let (J , g) belong

to one of the classes in Table 1, dimM= 4n. Further, define orthonormal vector fields

X1, ..., X2n, JX 1, ..., JX 2n on some open neighborhood Uof a point p ∈ M . Assuming

J1 = J on U, we get an almost Hermitian manifold (U , J1, g) which also belongs to the

corresponding class. Then, we can define J2 by the following equalities

J2X1 = Xn+1, J2X2 = Xn+2, . . . , J2Xn = X2n;

J2Xn+1 = −X1, J2Xn+2 = −X2, . . . , J2X2n = −Xn;

J2(J1X1) = −J1Xn+1, J2(J1X2) = −J1Xn+2, . . . , J2(J1Xn) = −J1X2n;

J2(J1Xn+1) = J1X1, J2(J1Xn+2) = J1X2, . . . , J2(J1X2n) = J1Xn.

It is clear that J1J2 = −J2J1, J2
1 = J2

2 = −I and g(JiX, JiY ) = g(X, Y ), i= 1, 2, 3 on

U , where J3 = J1J2, X, Y ∈χ(U).

If (M , J , g) is a Kaehlerian manifold (class K ) and dimM= 4n then we obtain the

situation given in proposition 1.1 on the almost hyperHermitian manifold

(U , J1, J2, J3, g). Unauthenticated
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One can find examples of the structures from Table 1 in [2], [3].

To get an almost Hermitian manifold of dimension 4n we can take a Riemannian

product M × M .

Problem 1.3. Let (U α, U β) be any pair of the classes from Table 1 (α, β = 0, ..., 15).

Can one construct such examples of ahHs (J1, J2, J3, g) on manifolds such that (J1, g)

belongs to the class U α and (J2, g) belongs to the class U β? The cases (K , K ) and

(U , U ) are easily illustrated.

30. Definition 1.4. [5] A connected Riemannian manifold (M , g) with a family

of local isometries {sx: x ∈ M} is called a locally k-symmetric Riemannian space (k − s.

l. R. s.) if the following axioms are fulfilled :

(a) sx(x) = x and x is the isolated fixed point of the local symmetry sx;

(b) the tensor field S : Sx = (sx)∗x is smooth and invariant under any local isometry sx;

(c) Sk = I and k is the least of such positive integers.

If M is a k-s. l. R. s. then the unique canonical connection ∇̃ can be defined by the

following formula (see [2])

∇̃XY = ∇XY −
1

k

k−1∑

j=1

∇X(Sj)Sk−jY =
1

k

k−1∑

j=0

Sj∇XSk−jY , X, Y ∈ χ(M). (5)

Further, we have ∇̃g = ∇̃R̃ = ∇̃h = ∇̃S = 0, S(R̃) = R̃, S(h) = h, S(g) = g, where

h = ∇− ∇̃ and R̃ is the curvature tensor field of ∇̃.

Let M be such a k-s. l. R. s. that Sx = (sx)∗x has only complex eigenvalues a1± b1i,

..., ar ± bri. We define distributions Di, i= 1, ..., r by

Di = ker(S2 − 2aiS + I).

Every X ∈χ(M) has the unique decomposition X = X1+ ... + Xr, where Xi ∈ Di,

i= 1, ..., r. An almost complex structure J on M is defined by

JX =

r∑

i=1

1

bi

(S − aiI)Xi. (6)

It is proved in [2] that (J , g) is an almost Hermitian structure and the connections ∇̄

and ∇̃ defined by (1) and (5) respectively coincide i.e. ∇̃ = ∇̄ on M .

Proposition 1.5. Let (J1, J2, J3, g) be such an ahHs on a k-s. l. R. s. (M , g) that

J1= J , where J is defined by (6). In this case J 2 and J 3 are not invariant with respect to

the family {sx: x ∈ M}.

Proof. Otherwise we have (sx)∗x · J2X = J2 · (sx)∗xX i.e. S · J2X = J2·SX. Using (6) we

get

J2J1X =

r∑

i=1

1

bi

(J2S − aiJ2Xi) =

r∑

i=1

1

bi

(S − aiI)J2Xi,
Unauthenticated
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J1J2X =

r∑

i=1

1

bi

(S − aiI)(J2X)i,

(S2 − 2aiS + I)J2Xi = J2(S
2 − 2aiS + I)Xi = 0,

therefore J2Xi= (J2X)i and J1J2X= J2J1X for any X ∈χ(M). But we have

J1J2X = − J2J1X, hence J3X = J1J2X= 0 i.e. J3= 0.

We obtained the contradiction because J3 is nonsingular. By similar arguments J3

can not be invariant with respect to the family {sx: x ∈ M}. �

2 HyperHermitian structures on tangent bundles

00. Let (M , g) be a Riemannian manifold and TM be its tangent bundle. For a metric

connection ∇̃ (∇̃g = 0) we consider the connection map K̃ of ∇̃ [1], [4], defined by the

formula

∇̃XZ = K̃Z∗X, (7)

where Z is considered as a map from M into TM and the right side means a vector field

on M assigning to p ∈ M the vector K̃Z∗Xp ∈ Mp.

If U ∈TM, we denote by HU the kernel of K̃|TMU
and this n-dimensional subspace of

TM U is called the horizontal subspace of TM U .

Let π denote the natural projection of TM onto M , then π∗ is a C∞-map of TTM onto

TM. If U ∈TM, we denote by VU the kernel of π∗|TMU
and this n-dimensional subspace

of TM U is called the vertical subspace of TM U (dimTM U= 2dimM= 2n). The following

maps are isomorphisms of corresponding vector spaces (p= π (U))

π∗|TMU
: HU → Mp, K̃|TMU

: VU → Mp

and we have

TMU = HU ⊕ VU .

If X ∈χ(M), then there exists exactly one vector field on TM called the “horizontal lift”

(resp. “vertical lift”) of X and denoted by X̄h (X̄v), such that for all U ∈TM :

π∗X̄
h
U = Xπ(U), K̃X̄h

U = 0π(U), (8)

π∗X̄
v
U = 0π(U), K̃X̄v

U = Xπ(U). (9)

Let R̃ be the curvature tensor field of ∇̃, then following [1] we write

[X̄v, Ȳ v] = 0, (10)

[X̄h, Ȳ v] =
(

¯∇̃XY
)v

, (11)

π∗([X̄
h, Ȳ h]U ) = [X, Y ], (12)

K̃([X̄h, Ȳ h]U) = R̃(X, Y )U. (13)Unauthenticated
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For vector fields X̄ = X̄h ⊕ X̄v and Ȳ = Ȳ h ⊕ Ȳ v on TM the natural Riemannian

metric < , > is defined on TM by the formula

< X̄, Ȳ >= g(π∗X̄, π∗Ȳ ) + g(K̃X̄, K̃Ȳ ). (14)

It is clear that the subspaces HU and VU are orthogonal with respect to < , >.

It is easy to verify that X̄h
1 , X̄h

2 , . . . , X̄h
n , X̄v

1 , X̄v
2 , . . . , X̄v

n are orthonormal vector fields

on TM if X1, X2, . . ., Xn are those on M i.e. g(Xi, Xj) = δi
j.

10. We define a tensor field J1 on TM by the equalities

J1X̄
h = X̄v, J1X̄

v = −X̄h, X ∈ χ(M). (15)

For X ∈χ(M) we get

J2
1 X̄ = J1(J1(X̄

h ⊕ X̄v)) = J1(−X̄h ⊕ X̄v) = −(X̄h ⊕ X̄v) = −IX̄

and

J2
1 = −I.

For X, Y ∈χ(M) we obtain

< J1X̄, J1Ȳ >=< −X̄h ⊕ X̄v,−Ȳ h ⊕ Ȳ v >=< −X̄h,−Ȳ h > + < X̄v, Ȳ v >,

< X̄, Ȳ >=< X̄h ⊕ X̄v, Ȳ h ⊕ Ȳ v >=< X̄h, Ȳ h > + < X̄v, Ȳ v >

and it follows that <J1X̄, J1Ȳ > = <X̄, Ȳ >, (TM, J1, < , >) is an almost Hermitian

manifold.

Further, we want to analyze the second fundamental tensor field h1 of the pair (J1, <

, >).

The Riemannian connection ∇̂ of the metric < , > on TM is defined by the formula

(see [4])

< ∇̂X̄ Ȳ , Z̄ > =
1

2
(X̄ < Ȳ , Z̄ > +Ȳ < Z̄, X̄ > −Z̄ < X̄, Ȳ > + < Z̄, [X̄, Ȳ ] > +

+ < Ȳ , [Z̄, X̄] > + < X̄, [Z̄, Ȳ ] >), X, Y, Z ∈ χ(M). (16)

Using (2), (3) for orthonormal vector fields X̄, Ȳ , Z̄ on TM we obtain

h1
X̄Ȳ Z̄ = < h1

X̄ Ȳ , Z̄ >=
1

2
< ∇̂X̄ Ȳ + J1∇̂X̄J1Ȳ , Z̄ >=

=
1

2
(< ∇̂X̄ Ȳ , Z̄ > − < ∇̂X̄J1Ȳ , J1Z̄ >) =

=
1

4
(< [X̄, Ȳ ], Z̄ > + < [Z̄, X̄], Ȳ > + < [Z̄, Ȳ ], X̄ > −

− < [X̄, J1Ȳ ], J1Z̄ > − < [J1Z̄, X̄], J1Ȳ > − < [J1Z̄, J1Ȳ ], X̄ >). (17)

Using (10)–(13) and (17) we consider the following cases for the tensor field h1 assu-

ming all the vector fields to be orthonormal. Unauthenticated
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For X, Y ∈ χ(M) we get

< J2X̄, J2Ȳ > = <
(
JX

)h
⊕−

(
JX

)v
,
(
JY

)h
⊕−

(
JY

)v
>=<

(
JX

)h
,
(
JY

)h
> +

+ <
(
JX

)v
,
(
JY

)v
>= g(JX, JY ) + g(JX, JY ) =

= g(X, Y ) + g(X, Y ) =< X̄h, Ȳ h > + < X̄v, Ȳ v >

= < X̄h ⊕ X̄v, Ȳ h ⊕ Ȳ v >=< X̄, Ȳ > .

Further, we obtain

J1(J2X̄) = J1(
(
JX

)h
⊕−

(
JX

)v
) =

(
JX

)h
⊕

(
JX

)v
,

J2(J1X̄) = J2(−X̄h ⊕ X̄v) = −
(
JX

)h
⊕−

(
JX

)v
.

Thus, we get J1J2 = −J2J1 = J3 and ahHs (J1, J2, J3, < , >) on TM has been

constructed.

Using (2), (3) for orthonormal vector fields X̄, Ȳ , Z̄ on TM we obtain

h2
X̄Ȳ Z̄ = < h2

X̄ Ȳ , Z̄ >=
1

2
< ∇̂X̄ Ȳ + J2∇̂X̄J2Ȳ , Z̄ >=

=
1

2
(< ∇̂X̄ Ȳ , Z̄ > − < ∇̂X̄J2Ȳ , J2Z̄ >) =

=
1

4
(< [X̄, Ȳ ], Z̄ > + < [Z̄, X̄], Ȳ > + < [Z̄, Ȳ ], X̄ > −

− < [X̄, J2Ȳ ], J2Z̄ > − < [J2Z̄, X̄], J2Ȳ > − < [J2Z̄, J2Ȳ ], X̄ >). (19)

Using (10)–(13) and (19) we consider the following cases for the tensor field h2 assu-

ming all the vector fields to be orthonormal.

h2
X̄hȲ hZ̄h =

1

4
(< [X̄h, Ȳ h], Z̄h > + < [Z̄h, X̄h], Ȳ h > + < [Z̄h, Ȳ h], X̄h > −

− < [X̄h, J2Ȳ
h], J2Z̄

h > − < [J2Z̄h, X̄h], J2Ȳ h > −

− < [J2Z̄h, J2Ȳ h], X̄h >) =
1

4
(g([X, Y ], Z) + g([Z, X], Y ) +

+g([Z, Y ], X) − g([X, JY ], JZ) − g([JZ, X], JY ) −

−g([JZ, JY ], X)) =
1

2
(g(∇XY, Z) − g(∇XJY , JZ)) = hXY Z . (1.2 0)

h2
X̄hȲ hZ̄v =

1

4
(< [X̄h, Ȳ h], Z̄v > + < [Z̄v, X̄h], Ȳ h > + < [Z̄v, Ȳ h], X̄h > −

− < [X̄h, J2Ȳ h], J2Z̄v > − < [J2Z̄v, X̄h], J2Ȳ h > −

− < [J2Z̄v, J2Ȳ h], X̄h >) =
1

4
(g(R̃(X, Y )U, Z) + g(R̃(X, JY )U, JZ)) =

= −
1

4
(g(R̃(X, Y )Z, U) + g(R̃(X, JY )JZ, U)). (2.2 0)

By similar arguments we obtain

h2
X̄hȲ vZ̄h =

1

4
(g(R̃(X, Z)Y, U) + g(R̃(X, JZ)JY , U)). (3.2 0)Unauthenticated
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h2
X̄vȲ hZ̄h = −

1

4
(g(R̃(Z, Y )X, U) − g(R̃(JZ, JY )X, U)). (4.2 0)

h2
X̄vȲ vZ̄v = 0. (5.2 0)

h2
X̄v Ȳ vZ̄h = 0. (6.2 0)

h2
X̄v Ȳ hZ̄v = 0. (7.2 0)

h2
X̄hȲ vZ̄v =

1

2
(g(∇̃XY, Z) − g(∇̃XJY , JZ)). (8.2 0)

It is clear that the construction of the ahHs on TM strongly depends on the connection

∇̃ and we can obtain in this way an infinite dimensional set of ahHs.

Theorem 2.1. Let (M , g, J) be an almost Hermitian manifold. Then there exists an

infinite family of ahHs on TM (in particular, such structures can be constructed by the

method above).

Corollary 2.2. Let (M , g) be a Riemannian manifold. Then there exists an infinite set

of ahHs on TTM.
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