Central European Science Journals

www.cesj.com

Central European Journal of Mathematics

Central European Science Journals ${
m CEJM}~2(5)~2004~615{
m -}623$

On almost hyperHermitian structures on Riemannian manifolds and tangent bundles

Serge A. Bogdanovich*, Alexander A. Ermolitski †

Cathedra of Mathematics, Belorussian State Pedagogical University, st. Sovietskaya 18, Minsk, 220050, Belarus

Received 15 December 2003; accepted 15 February 2004

Abstract: Some results concerning almost hyperHermitian structures are considered, using the notions of the canonical connection and the second fundamental tensor field h of a structure on a Riemannian manifold which were introduced by the second author.

With the help of any metric connection ∇ on an almost Hermitian manifold M an almost hyperHermitian structure can be constructed in the defined way on the tangent bundle TM. A similar construction was considered in [6], [7]. This structure includes two basic anticommutative almost Hermitian structures for which the second fundamental tensor fields h^1 and h^2 are computed. It allows us to consider various classes of almost hyperHermitian structures on TM. In particular, there exists an infinite-dimensional set of almost hyperHermitian structures on TTM where M is any Riemannian manifold. (c) Central European Science Journals. All rights reserved.

Keywords: Riemannian manifolds, almost hyperHermitian structures, tangent bundle MSC (2000): 53C15, 53C26

Some remarks on almost hyperHermitian structures

1⁰. Let (M, J, g) be an almost Hermitian manifold i.e. $J^2 = -I$ and g(JX, JY) = g(X, Y) for $X, Y \in \chi(M)$, where g is a fixed Riemannian metric on M. For any Riemannian metric \tilde{g} on M such a metric g is defined by the formula

 $g(X, Y) = \frac{1}{2}(\tilde{g}(X, Y) + \tilde{g}(JX, JY)), X, Y \in \chi(M).$

Let ∇ be the Riemannian connection of the metric g. Then one can define a connection $\bar{\nabla}$ on M by

[†] E-mail: erm@bspu.unibel.by

^{*} E-mail: bogdanovich@bspu.unibel.by

$$\bar{\nabla}_X Y = \frac{1}{2} (\nabla_X Y - J \nabla_X J Y) = \nabla_X Y + \frac{1}{2} \nabla_X (J) J Y, X, Y \in \chi(M).$$
(1)

The connection $\bar{\nabla}$ is called the canonical connection of the pair (J, g), or more precisely of the corresponding *G*-structure, where G = U(n), [2]. In particular, $\bar{\nabla}g = 0$, $\bar{\nabla}J = 0$.

The tensor field h is called the second fundamental tensor field of the pair (J, g) [2], where

$$h_X Y = \nabla_X Y - \bar{\nabla}_X Y = -\frac{1}{2} \nabla_X (J) J Y = \frac{1}{2} (\nabla_X Y + J \nabla_X J Y), X, Y \in \chi(M); \quad (2)$$

$$h_{XYZ} = g(h_X Y, Z) = -h_{XZY}.$$
(3)

In particular, the classification given in [3] can be rewritten in terms of the tensor field h, [2]. Let dim $M \ge 6$ and $2\beta(X) = \delta\Phi(JX)$, where $\Phi(X, Y) = g(JX, Y)$. Then we have

Class	Defining condition
К	h=0
$\mathbf{U}_1 {=} \mathbf{N} \mathbf{K}$	$h_X X = 0$
$\mathbf{U}_2 {=} \mathbf{A} \mathbf{K}$	$\sigma h_{XYZ} = 0$
$\mathbf{U}_{3}{=}\mathbf{SK}{\cap}\mathbf{H}$	$h_{XYZ} - h_{JXJYZ} = \beta(Z) = 0$
\mathbf{U}_4	$h_{XYZ} = \frac{1}{2(n-1)} [\beta(Z) - \beta(Y) - \beta(JZ) + \beta(JY)]$
$\mathbf{U}_1{\oplus}\mathbf{U}_2{=}\mathbf{Q}\mathbf{K}$	$h_{XYJZ} = h_{JXYZ}$
$\mathbf{U}_{3}{\oplus}\mathbf{U}_{4}{=}\mathbf{H}$	$N(J) = 0$ or $h_{XYJZ} = -h_{JXYZ}$
$\mathbf{U}_1{\oplus}\mathbf{U}_3$	$h_{XXY} - h_{JXJXY} = \beta(Z) = 0$
$\mathbf{U}_2{\oplus}\mathbf{U}_4$	$\sigma[h_{XYJZ} - \frac{1}{(n-1)} < JX, Y > \beta(Z)] = 0$
$\mathbf{U}_1 \oplus \mathbf{U}_4$	$h_{XXY} = -\frac{1}{2(n-1)} [\langle X, Y \rangle \beta(X) - X ^2 \beta(Y) - \langle X, JY \rangle \beta(JX)]$
$\mathbf{U}_2{\oplus}\mathbf{U}_3$	$\sigma[h_{XYJZ} + h_{JXYZ}] = \beta(Z) = 0$
$\mathbf{U}_1 \oplus \mathbf{U}_2 \oplus \mathbf{U}_3 = \mathbf{SK}$	eta=0
$\mathbf{U}_1 \oplus \mathbf{U}_2 \oplus \mathbf{U}_4$	$h_{XYJZ} - h_{JXYZ} = \frac{1}{(n-1)} [\beta(JZ) - \beta(JY) + \beta(Z) - \beta(Y)]$
$\mathbf{U}_1{\oplus}\mathbf{U}_3{\oplus}\mathbf{U}_4$	$h_{XJXY} + h_{JXXY} = 0$
$\mathbf{U}_2{\oplus}\mathbf{U}_3{\oplus}\mathbf{U}_4$	$\sigma[h_{XYJZ} + h_{JXYZ}] = 0$
U	No condition

Table 1

2⁰. We consider an almost hyperHermitian structure (ahHs) on a manifold M consisting of (J_1, J_2, J_3, g) , where $J_i^2 = -I$, $J_1J_2 = -J_2J_1 = J_3$, $g(J_iX, J_iY) = g(X, Y)$, i = 1, 2, 3.

Download Date | 11/3/16 10:40 AM

For any Riemannian metric \tilde{g} such a metric g can be defined by the formula

 $g(X, Y) = \frac{1}{4}(\tilde{g}(X, Y) + \tilde{g}(J_1X, J_1Y) + \tilde{g}(J_2X, J_2Y) + \tilde{g}(J_3X, J_3Y)), X, Y \in \chi(M).$

If ∇ is the Riemannian connection of the metric g, then the canonical connection $\overline{\nabla}$ in the sense of [2] of the ahHs has the following form

$$\bar{\nabla}_X Y = \frac{1}{4} (\nabla_X Y - J_1 \nabla_X J_1 Y - J_2 \nabla_X J_2 Y - J_3 \nabla_X J_3 Y), X, Y \in \chi(M).$$
(4)

In particular, $\nabla q = 0$, $\nabla J_i = 0$, i = 1, 2, 3.

Proposition 1.1. Let (M, J_1, g) be a Kaehlerian manifold i.e. $\nabla J_1 = 0$ on M. Then the connection given by (4) coincides with those defined by (1) for (M, J_2, g) and (M, J_3, g) g). In particular, the second fundamental tensor fields of (M, J_2, g) and (M, J_3, g) are the same.

Proof.

$$\begin{split} \bar{\nabla}_X Y &= \frac{1}{4} (\nabla_X Y - J_1^2 \nabla_X Y - J_2 \nabla_X J_2 Y - J_1 J_2 \nabla_X J_1 J_2 Y) = \\ &= \frac{1}{4} (2 \nabla_X Y - J_2 \nabla_X J_2 Y - J_1 J_2 J_1 \nabla_X J_2 Y) = \\ &= \frac{1}{2} (\nabla_X Y - J_2 \nabla_X J_2 Y) = \\ &= \frac{1}{2} (\nabla_X Y - J_3 J_1 \nabla_X J_3 J_1 Y) = \\ &= \frac{1}{2} (\nabla_X Y - J_3 \nabla_X J_3 Y). \end{split}$$

To illustrate the situation described in *proposition* 1.1 we consider the following example.

Example 1.2. Let (M, J, g) be an almost Hermitian manifold and let (J, g) belong to one of the classes in Table 1, $\dim M = 4n$. Further, define orthonormal vector fields $X_1, ..., X_{2n}, JX_1, ..., JX_{2n}$ on some open neighborhood U of a point $p \in M$. Assuming $J_1 = J$ on U, we get an almost Hermitian manifold (U, J_1, g) which also belongs to the corresponding class. Then, we can define J_2 by the following equalities

$$J_{2}X_{1} = X_{n+1}, J_{2}X_{2} = X_{n+2}, \dots, J_{2}X_{n} = X_{2n};$$

$$J_{2}X_{n+1} = -X_{1}, J_{2}X_{n+2} = -X_{2}, \dots, J_{2}X_{2n} = -X_{n};$$

$$J_{2}(J_{1}X_{1}) = -J_{1}X_{n+1}, J_{2}(J_{1}X_{2}) = -J_{1}X_{n+2}, \dots, J_{2}(J_{1}X_{n}) = -J_{1}X_{2n};$$

$$J_{2}(J_{1}X_{n+1}) = J_{1}X_{1}, J_{2}(J_{1}X_{n+2}) = J_{1}X_{2}, \dots, J_{2}(J_{1}X_{2n}) = J_{1}X_{n}.$$

It is clear that $J_1J_2 = -J_2J_1$, $J_1^2 = J_2^2 = -I$ and $g(J_iX, J_iY) = g(X, Y)$, i = 1, 2, 3 on U, where $J_3 = J_1 J_2$, $X, Y \in \chi(U)$.

If (M, J, g) is a Kaehlerian manifold (class **K**) and dimM = 4n then we obtain the situation given in *proposition* 1.1 on the almost hyperHermitian manifold Unauthenticated $(U, J_1, J_2, J_3, g).$

One can find examples of the structures from Table 1 in [2], [3].

To get an almost Hermitian manifold of dimension 4n we can take a Riemannian product $M \times M$.

Problem 1.3. Let $(\boldsymbol{U}_{\alpha}, \boldsymbol{U}_{\beta})$ be any pair of the classes from Table 1 $(\alpha, \beta = 0, ..., 15)$. Can one construct such examples of ahHs (J_1, J_2, J_3, g) on manifolds such that (J_1, g) belongs to the class \boldsymbol{U}_{α} and (J_2, g) belongs to the class \boldsymbol{U}_{β} ? The cases $(\boldsymbol{K}, \boldsymbol{K})$ and $(\boldsymbol{U}, \boldsymbol{U})$ are easily illustrated.

3⁰. **Definition 1.4.** [5] A connected Riemannian manifold (M, g) with a family of local isometries $\{s_x: x \in M\}$ is called a locally k-symmetric Riemannian space (k - s. l. R. s.) if the following axioms are fulfilled:

(a) $s_x(x) = x$ and x is the isolated fixed point of the local symmetry s_x ;

(b) the tensor field S: $S_x = (s_x)_{*x}$ is smooth and invariant under any local isometry s_x ;

(c) $S^k = I$ and k is the least of such positive integers.

If M is a k-s. l. R. s. then the unique canonical connection ∇ can be defined by the following formula (see [2])

$$\widetilde{\nabla}_X Y = \nabla_X Y - \frac{1}{k} \sum_{j=1}^{k-1} \nabla_X (S^j) S^{k-j} Y = \frac{1}{k} \sum_{j=0}^{k-1} S^j \nabla_X S^{k-j} Y, X, Y \in \chi(M).$$
(5)

Further, we have $\widetilde{\nabla}g = \widetilde{\nabla}\tilde{R} = \widetilde{\nabla}h = \widetilde{\nabla}S = 0$, $S(\tilde{R}) = \tilde{R}$, S(h) = h, S(g) = g, where $h = \nabla - \widetilde{\nabla}$ and \tilde{R} is the curvature tensor field of $\widetilde{\nabla}$.

Let *M* be such a *k*-s. l. R. s. that $S_x = (s_x)_{*x}$ has only complex eigenvalues $a_1 \pm b_1 i$, ..., $a_r \pm b_r i$. We define distributions D_i , i = 1, ..., r by

$$D_i = ker(S^2 - 2a_iS + I).$$

Every $X \in \chi(M)$ has the unique decomposition $X = X_1 + \dots + X_r$, where $X_i \in D_i$, $i = 1, \dots, r$. An almost complex structure J on M is defined by

$$JX = \sum_{i=1}^{r} \frac{1}{b_i} (S - a_i I) X_i.$$
 (6)

It is proved in [2] that (J, g) is an almost Hermitian structure and the connections $\overline{\nabla}$ and $\widetilde{\nabla}$ defined by (1) and (5) respectively coincide i.e. $\widetilde{\nabla} = \overline{\nabla}$ on M.

Proposition 1.5. Let (J_1, J_2, J_3, g) be such an ahHs on a k-s. l. R. s. (M, g) that $J_1 = J$, where J is defined by (6). In this case J_2 and J_3 are not invariant with respect to the family $\{s_x: x \in M\}$.

Proof. Otherwise we have $(s_x)_{*x} \cdot J_2 X = J_2 \cdot (s_x)_{*x} X$ i.e. $S \cdot J_2 X = J_2 \cdot S X$. Using (6) we get

$$J_2 J_1 X = \sum_{i=1}^r \frac{1}{b_i} (J_2 S - a_i J_2 X_i) = \sum_{\substack{i=1 \\ \text{Download Date | 11/3/16 10:40 AM}}^r \frac{1}{b_i} (S - a_i I) J_2 X_i,$$

$$J_1 J_2 X = \sum_{i=1}^r \frac{1}{b_i} (S - a_i I) (J_2 X)_i,$$
$$(S^2 - 2a_i S + I) J_2 X_i = J_2 (S^2 - 2a_i S + I) X_i = 0$$

therefore $J_2X_i = (J_2X)_i$ and $J_1J_2X = J_2J_1X$ for any $X \in \chi(M)$. But we have $J_1J_2X = - J_2J_1X$, hence $J_3X = J_1J_2X = 0$ i.e. $J_3 = 0$.

We obtained the contradiction because J_3 is nonsingular. By similar arguments J_3 can not be invariant with respect to the family $\{s_x: x \in M\}$.

2 HyperHermitian structures on tangent bundles

 $\mathbf{0}^{0}$. Let (M, g) be a Riemannian manifold and TM be its tangent bundle. For a metric connection $\widetilde{\nabla}$ ($\widetilde{\nabla}g = 0$) we consider the connection map \widetilde{K} of $\widetilde{\nabla}$ [1], [4], defined by the formula

$$\widetilde{\nabla}_X Z = \widetilde{K} Z_* X,\tag{7}$$

where Z is considered as a map from M into TM and the right side means a vector field on M assigning to $p \in M$ the vector $\tilde{K}Z_*X_p \in M_p$.

If $U \in TM$, we denote by H_U the kernel of $\tilde{K}_{|TM_U}$ and this *n*-dimensional subspace of TM_U is called the horizontal subspace of TM_U .

Let π denote the natural projection of TM onto M, then π_* is a C^{∞} -map of TTM onto TM. If $U \in TM$, we denote by V_U the kernel of $\pi_{*|TM_U}$ and this *n*-dimensional subspace of TM_U is called the vertical subspace of TM_U (dim $TM_U = 2 \dim M = 2n$). The following maps are isomorphisms of corresponding vector spaces ($p = \pi$ (U))

$$\pi_{*|TM_U}: \ H_U \to M_p, \quad \tilde{K}_{|TM_U}: \ V_U \to M_p$$

and we have

$$TM_U = H_U \oplus V_U.$$

If $X \in \chi(M)$, then there exists exactly one vector field on TM called the "horizontal lift" (resp. "vertical lift") of X and denoted by \bar{X}^h (\bar{X}^v), such that for all $U \in TM$:

$$\pi_* \bar{X}_U^h = X_{\pi(U)}, \quad \tilde{K} \bar{X}_U^h = 0_{\pi(U)}, \tag{8}$$

$$\pi_* \bar{X}_U^v = 0_{\pi(U)}, \quad \tilde{K} \bar{X}_U^v = X_{\pi(U)}.$$
(9)

Let \tilde{R} be the curvature tensor field of $\tilde{\nabla}$, then following [1] we write

$$[\bar{X}^v, \bar{Y}^v] = 0, \tag{10}$$

$$[\bar{X}^h, \bar{Y}^v] = \left(\bar{\nabla}_X \bar{Y}\right)^v,\tag{11}$$

$$\pi_*([\bar{X}^h, \bar{Y}^h]_U) = [X, Y], \tag{12}$$

$$\tilde{K}([\bar{X}^h, \bar{Y}^h]_U) = \tilde{R}(X, Y)U. \qquad \text{Unauthenticated} \qquad (13)$$
Download Date | 11/3/16 10:40 AM

For vector fields $\bar{X} = \bar{X}^h \oplus \bar{X}^v$ and $\bar{Y} = \bar{Y}^h \oplus \bar{Y}^v$ on TM the natural Riemannian metric \langle , \rangle is defined on TM by the formula

$$\langle \bar{X}, \bar{Y} \rangle = g(\pi_* \bar{X}, \pi_* \bar{Y}) + g(\tilde{K} \bar{X}, \tilde{K} \bar{Y}).$$
 (14)

It is clear that the subspaces H_U and V_U are orthogonal with respect to \langle , \rangle .

It is easy to verify that $\bar{X}_1^h, \bar{X}_2^h, \ldots, \bar{X}_n^h, \bar{X}_1^v, \bar{X}_2^v, \ldots, \bar{X}_n^v$ are orthonormal vector fields on *TM* if X_1, X_2, \ldots, X_n are those on *M* i.e. $g(X_i, X_j) = \delta_j^i$.

1⁰. We define a tensor field J_1 on TM by the equalities

$$J_1 \bar{X}^h = \bar{X}^v, J_1 \bar{X}^v = -\bar{X}^h, X \in \chi(M).$$
 (15)

For $X \in \chi(M)$ we get

$$J_1^2 \bar{X} = J_1(J_1(\bar{X}^h \oplus \bar{X}^v)) = J_1(-\bar{X}^h \oplus \bar{X}^v) = -(\bar{X}^h \oplus \bar{X}^v) = -I\bar{X}^v$$

and

$$J_1^2 = -I.$$

For $X, Y \in \chi(M)$ we obtain

$$< J_1 \bar{X}, J_1 \bar{Y} > = < -\bar{X}^h \oplus \bar{X}^v, -\bar{Y}^h \oplus \bar{Y}^v > = < -\bar{X}^h, -\bar{Y}^h > + < \bar{X}^v, \bar{Y}^v >,$$
$$< \bar{X}, \bar{Y} > = < \bar{X}^h \oplus \bar{X}^v, \bar{Y}^h \oplus \bar{Y}^v > = < \bar{X}^h, \bar{Y}^h > + < \bar{X}^v, \bar{Y}^v >$$

and it follows that $\langle J_1 \bar{X}, J_1 \bar{Y} \rangle = \langle \bar{X}, \bar{Y} \rangle$, $(TM, J_1, \langle , \rangle)$ is an almost Hermitian manifold.

Further, we want to analyze the second fundamental tensor field h^1 of the pair $(J_1, < , >)$.

The Riemannian connection $\hat{\nabla}$ of the metric \langle , \rangle on TM is defined by the formula (see [4])

$$<\hat{\nabla}_{\bar{X}}\bar{Y},\bar{Z}> = \frac{1}{2}(\bar{X}<\bar{Y},\bar{Z}>+\bar{Y}<\bar{Z},\bar{X}>-\bar{Z}<\bar{X},\bar{Y}>+<\bar{Z},[\bar{X},\bar{Y}]>+ <\bar{Y},[\bar{Z},\bar{X}]>+<\bar{X},[\bar{Z},\bar{Y}]>),\ X,Y,Z\in\chi(M).$$
(16)

Using (2), (3) for orthonormal vector fields \bar{X} , \bar{Y} , \bar{Z} on TM we obtain

$$\begin{aligned} h_{\bar{X}\bar{Y}\bar{Z}}^{1} &= \langle h_{\bar{X}}^{1}\bar{Y}, \bar{Z} \rangle = \frac{1}{2} \langle \hat{\nabla}_{\bar{X}}\bar{Y} + J_{1}\hat{\nabla}_{\bar{X}}J_{1}\bar{Y}, \bar{Z} \rangle = \\ &= \frac{1}{2}(\langle \hat{\nabla}_{\bar{X}}\bar{Y}, \bar{Z} \rangle - \langle \hat{\nabla}_{\bar{X}}J_{1}\bar{Y}, J_{1}\bar{Z} \rangle) = \\ &= \frac{1}{4}(\langle [\bar{X}, \bar{Y}], \bar{Z} \rangle + \langle [\bar{Z}, \bar{X}], \bar{Y} \rangle + \langle [\bar{Z}, \bar{Y}], \bar{X} \rangle - \\ &- \langle [\bar{X}, J_{1}\bar{Y}], J_{1}\bar{Z} \rangle - \langle [J_{1}\bar{Z}, \bar{X}], J_{1}\bar{Y} \rangle - \langle [J_{1}\bar{Z}, J_{1}\bar{Y}], \bar{X} \rangle). \end{aligned}$$
(17)

Using (10)-(13) and (17) we consider the following cases for the tensor field h^1 assuming all the vector fields to be orthonormal.

Download Date | 11/3/16 10:40 AM

buomenab

For $X, Y \in \chi(M)$ we get

$$\langle J_2 \bar{X}, J_2 \bar{Y} \rangle = \langle (\overline{JX})^h \oplus - (\overline{JX})^v, (\overline{JY})^h \oplus - (\overline{JY})^v \rangle = \langle (\overline{JX})^h, (\overline{JY})^h \rangle + + \langle (\overline{JX})^v, (\overline{JY})^v \rangle = g(JX, JY) + g(JX, JY) = = g(X, Y) + g(X, Y) = \langle \bar{X}^h, \bar{Y}^h \rangle + \langle \bar{X}^v, \bar{Y}^v \rangle = = \langle \bar{X}^h \oplus \bar{X}^v, \bar{Y}^h \oplus \bar{Y}^v \rangle = \langle \bar{X}, \bar{Y} \rangle .$$

Further, we obtain

$$J_1(J_2\bar{X}) = J_1((\overline{JX})^h \oplus - (\overline{JX})^v) = (\overline{JX})^h \oplus (\overline{JX})^v,$$

$$J_2(J_1\bar{X}) = J_2(-\bar{X}^h \oplus \bar{X}^v) = -(\overline{JX})^h \oplus - (\overline{JX})^v.$$

Thus, we get $J_1J_2 = -J_2J_1 = J_3$ and ahHs $(J_1, J_2, J_3, <, >)$ on TM has been constructed.

Using (2), (3) for orthonormal vector fields \bar{X} , \bar{Y} , \bar{Z} on TM we obtain

$$\begin{aligned} h_{\bar{X}\bar{Y}\bar{Z}}^{2} &= \langle h_{\bar{X}}^{2}\bar{Y}, \bar{Z} \rangle = \frac{1}{2} \langle \hat{\nabla}_{\bar{X}}\bar{Y} + J_{2}\hat{\nabla}_{\bar{X}}J_{2}\bar{Y}, \bar{Z} \rangle = \\ &= \frac{1}{2}(\langle \hat{\nabla}_{\bar{X}}\bar{Y}, \bar{Z} \rangle - \langle \hat{\nabla}_{\bar{X}}J_{2}\bar{Y}, J_{2}\bar{Z} \rangle) = \\ &= \frac{1}{4}(\langle [\bar{X}, \bar{Y}], \bar{Z} \rangle + \langle [\bar{Z}, \bar{X}], \bar{Y} \rangle + \langle [\bar{Z}, \bar{Y}], \bar{X} \rangle - \\ &- \langle [\bar{X}, J_{2}\bar{Y}], J_{2}\bar{Z} \rangle - \langle [J_{2}\bar{Z}, \bar{X}], J_{2}\bar{Y} \rangle - \langle [J_{2}\bar{Z}, J_{2}\bar{Y}], \bar{X} \rangle). \end{aligned}$$
(19)

Using (10)–(13) and (19) we consider the following cases for the tensor field h^2 assuming all the vector fields to be orthonormal.

$$\begin{aligned} h_{\bar{X}^{h}\bar{Y}^{h}\bar{Z}^{h}}^{2} &= \frac{1}{4} (\langle [\bar{X}^{h}, \bar{Y}^{h}], \bar{Z}^{h} \rangle + \langle [\bar{Z}^{h}, \bar{X}^{h}], \bar{Y}^{h} \rangle + \langle [\bar{Z}^{h}, \bar{Y}^{h}], \bar{X}^{h} \rangle - \\ &- \langle [\bar{X}^{h}, J_{2}\bar{Y}^{h}], J_{2}\bar{Z}^{h} \rangle - \langle [J_{2}\bar{Z}^{h}, \bar{X}^{h}], J_{2}\bar{Y}^{h} \rangle - \\ &- \langle [J_{2}\bar{Z}^{h}, J_{2}\bar{Y}^{h}], \bar{X}^{h} \rangle) = \frac{1}{4} (g([X, Y], Z) + g([Z, X], Y) + \\ &+ g([Z, Y], X) - g([X, JY], JZ) - g([JZ, X], JY) - \\ &- g([JZ, JY], X)) = \frac{1}{2} (g(\nabla_{X}Y, Z) - g(\nabla_{X}JY, JZ)) = h_{XYZ}. \quad (1.2^{0}) \end{aligned}$$

$$\begin{aligned} h_{\bar{X}^{h}\bar{Y}^{h}\bar{Z}^{v}}^{2} &= \frac{1}{4} (\langle [\bar{X}^{h}, \bar{Y}^{h}], \bar{Z}^{v} \rangle + \langle [\bar{Z}^{v}, \bar{X}^{h}], \bar{Y}^{h} \rangle + \langle [\bar{Z}^{v}, \bar{Y}^{h}], \bar{X}^{h} \rangle - \\ &- \langle [\bar{X}^{h}, J_{2}\bar{Y}^{h}], J_{2}\bar{Z}^{v} \rangle - \langle [J_{2}\bar{Z}^{v}, \bar{X}^{h}], J_{2}\bar{Y}^{h} \rangle - \\ &- \langle [J_{2}\bar{Z}^{v}, J_{2}\bar{Y}^{h}], \bar{X}^{h} \rangle = \frac{1}{4} (g(\tilde{R}(X, Y)U, Z) + g(\tilde{R}(X, JY)U, JZ)) = \\ &= -\frac{1}{4} (g(\tilde{R}(X, Y)Z, U) + g(\tilde{R}(X, JY)JZ, U)). \end{aligned}$$

By similar arguments we obtain

$$h_{\bar{X}^{h}\bar{Y}^{v}\bar{Z}^{h}}^{2} = \frac{1}{4} (g(\tilde{R}(X,Z)Y,U) + g(\tilde{R}(X,JZ)JY,U))_{\text{Unauthenticated}} (3.2^{0})$$

Download Date | 11/3/16 10:40 AM

$$h_{\bar{X}^v\bar{Y}^h\bar{Z}^h}^2 = -\frac{1}{4} (g(\tilde{R}(Z,Y)X,U) - g(\tilde{R}(JZ,JY)X,U)).$$
(4.2⁰)

$$h_{\bar{X}^v\bar{Y}^v\bar{Z}^v}^2 = 0. (5.2^0)$$

$$h_{\bar{X}^v\bar{Y}^v\bar{Z}^h}^2 = 0. (6.2^0)$$

$$h_{\bar{X}^v\bar{Y}^h\bar{Z}^v}^2 = 0. (7.2^0)$$

$$h_{\bar{X}^h\bar{Y}^v\bar{Z}^v}^2 = \frac{1}{2} (g(\widetilde{\nabla}_X Y, Z) - g(\widetilde{\nabla}_X JY, JZ)).$$

$$(8.2^{0})$$

It is clear that the construction of the ahHs on TM strongly depends on the connection $\widetilde{\nabla}$ and we can obtain in this way an infinite dimensional set of ahHs.

Theorem 2.1. Let (M, g, J) be an almost Hermitian manifold. Then there exists an infinite family of ahHs on TM (in particular, such structures can be constructed by the method above).

Corollary 2.2. Let (M, g) be a Riemannian manifold. Then there exists an infinite set of ahHs on TTM.

References

- P. Dombrowski: "On the Geometry of the Tangent Bundle", J. Reine und Angew. Math., Vol. 210, (1962), pp. 73–88.
- [2] A.A. Ermolitski: *Riemannian manifolds with geometric structures*, BSPU, Minsk, 1998 (in Russian).
- [3] A. Gray and L.M. Herwella: "The sixteen classes of almost Hermitian manifolds and their linear invariants", *Ann. Mat. pura appl.*, Vol. 123, (1980), pp. 35–58.
- [4] D. Gromoll, W. Klingenberg and W. Meyer: Riemannsche geometrie im groβen, Springer, Berlin, 1968 (in German).
- [5] O. Kowalski: *Generalized symmetric space*, Lecture Notes in Math, Vol. 805, Springer-Verlag, 1980.
- [6] F. Tricerri: "Sulle varieta dotate di due strutture quusi complesse linearmente indipendenti", *Riv. Mat. Univ. Parma*, Vol. 3, (1974), pp. 349–358 (in Italian).
- [7] F. Tricerri: "Conessioni lineari e metriche Hermitiene sopra varieta dotate di due strutture quasi complesse", *Riv. Mat. Univ. Parma*, Vol. 4, (1975), pp. 177–186 (in Italian).