Central European Science Journals

ww.cesi.com

Central European Journal of Mathematics

Central European Science Journals CEJM 2(5) 2004 615–623

On almost hyperHermitian structures on Riemannian manifolds and tangent bundles

Serge A. Bogdanovich[∗] , Alexander A. Ermolitski†

Cathedra of Mathematics, Belorussian State Pedagogical University, st. Sovietskaya 18, Minsk, 220050, Belarus

Received 15 December 2003; accepted 15 February 2004

Abstract: Some results concerning almost hyperHermitian structures are considered, using the notions of the canonical connection and the second fundamental tensor field h of a structure on a Riemannian manifold which were introduced by the second author.

With the help of any metric connection ∇ on an almost Hermitian manifold M an almost hyperHermitian structure can be constructed in the defined way on the tangent bundle TM. A similar construction was considered in [6], [7]. This structure includes two basic anticommutative almost Hermitian structures for which the second fundamental tensor fields $h¹$ and $h²$ are computed. It allows us to consider various classes of almost hyperHermitian structures on TM. In particular, there exists an infinite-dimensional set of almost hyperHermitian structures on TTM where M is any Riemannian manifold. c Central European Science Journals. All rights reserved. **From annihilation From Allied School From annihilation From annihilation From annihilation** *Guidence of Multernaties, Becomession of Multernaties, B. Societishan of Nuklernaties, B. Societishan 3 (All Mu*

Keywords: Riemannian manifolds, almost hyperHermitian structures, tangent bundle MSC (2000): 53C15, 53C26

1 Some remarks on almost hyperHermitian structures

 $\mathbf{1}^0$ Let (M, J, g) be an almost Hermitian manifold i.e. $J^2 = -I$ and $g(JX, JY) = g(X,$ Y) for X, $Y \in \chi(M)$, where g is a fixed Riemannian metric on M. For any Riemannian metric \tilde{g} on M such a metric q is defined by the formula

 $g(X, Y) = \frac{1}{2}(\tilde{g}(X, Y) + \tilde{g}(JX, JY)), X, Y \in \chi(M).$

Let ∇ be the Riemannian connection of the metric g. Then one can define a connection $\bar{\nabla}$ on M by

[∗] E-mail: bogdanovich@bspu.unibel.by

[†] E-mail: erm@bspu.unibel.by

$$
\overline{\nabla}_X Y = \frac{1}{2} (\nabla_X Y - J \nabla_X J Y) = \nabla_X Y + \frac{1}{2} \nabla_X (J) J Y, X, Y \in \chi(M). \tag{1}
$$

The connection $\overline{\nabla}$ is called the canonical connection of the pair (J, g) , or more precisely of the corresponding G-structure, where $G = U(n)$, [2]. In particular, $\bar{\nabla}g = 0$, $\nabla J=0.$

The tensor field h is called the second fundamental tensor field of the pair (J, g) [2], where

$$
h_X Y = \nabla_X Y - \bar{\nabla}_X Y = -\frac{1}{2} \nabla_X (J) JY = \frac{1}{2} (\nabla_X Y + J \nabla_X J Y), X, Y \in \chi(M); \tag{2}
$$

$$
h_{XYZ} = g(h_X Y, Z) = -h_{XZY}.\tag{3}
$$

In particular, the classification given in [3] can be rewritten in terms of the tensor field h, [2]. Let dim $M \geq 6$ and $2\beta(X) = \delta\Phi(JX)$, where $\Phi(X, Y) = g(JX, Y)$. Then we have

μ is called the second fundamental tensor field of the pair $(v, y \mid z)$, where	
$h_X Y = \nabla_X Y - \overline{\nabla}_X Y = -\frac{1}{2} \nabla_X (J) JY = \frac{1}{2} (\nabla_X Y + J \nabla_X J Y), X, Y \in \chi(M);$ (2)	
$h_{XYZ} = q(h_XY, Z) = -h_{XZY}.$ (3)	
In particular, the classification given in [3] can be rewritten in terms of the tensor field h, [2]. Let dim $M \geq 6$ and $2\beta(X) = \delta\Phi(JX)$, where $\Phi(X, Y) = g(JX, Y)$. Then we have	
Class	Defining condition
$\mathbf K$	$h=0$
$U_1 = N K$	$h_X X = 0$
$U_2 = AK$	$\sigma h_{XYZ}=0$
$U_3 = SK \cap H$	h_{XYZ} + h_{JXYZ} = $\beta(Z)$ = 0
\mathbf{U}_4	$h_{XYZ} = \frac{1}{2(n-1)}[<\!\!X, Y\!\!>\!\beta(Z) - <\!\!X, Z\!\!>\!\beta(Y) - <\!\!X, JY\!\!>\!\beta(JZ) +$ $+ \langle X, JZ \rangle \beta (JY)$
$U_1 \oplus U_2 = QK$	$h_{XYZ} = h_{JXYZ}$
$U_3 \oplus U_4 = H$	$N(J) = 0$ or $h_{XYZZ} = -h_{JXYZZ}$
$U_1 \oplus U_3$	$h_{XXY} - h_{JXJXY} = \beta(Z) = 0$
$U_2 \oplus U_4$	$\sigma[h_{XYZZ} - \frac{1}{(n-1)} < JX, Y> \beta(Z)] = 0$
$\mathbf{U}_1 \oplus \mathbf{U}_4$	$h_{XXY} = -\frac{1}{2(n-1)}[<\!\!X, Y>\!\beta(X)- X ^2\beta(Y)-<\!\!X, JY>\!\beta(JX)]$
$U_2 \oplus U_3$	$\sigma[h_{XYZ} + h_{JXYZ}] = \beta(Z) = 0$
$U_1 \oplus U_2 \oplus U_3 = SK$	$\beta = 0$
$\mathbf{U}_1 \oplus \mathbf{U}_2 \oplus \mathbf{U}_4$	$h_{XYZZ} - h_{JXYZ} = \frac{1}{(n-1)}[\langle X, Y \rangle \beta (JZ) - \langle X, Z \rangle \beta (JY) +$ $+\langle X, JY \rangle \beta(Z) - \langle X, JZ \rangle \beta(Y)$
$\mathbf{U}_1 \oplus \mathbf{U}_3 \oplus \mathbf{U}_4$	$h_{X,IXY} + h_{JXXY} = 0$
$U_2 \oplus U_3 \oplus U_4$	$\sigma[h_{XYZ} + h_{JXYZ}] = 0$
$\mathbf U$	No condition

Table 1

 $\mathbf{2}^{0}$ We consider an almost hyperHermitian structure (ahHs) on a manifold M consisting of (J_1, J_2, J_3, g) , where $J_i^2 = -I$, $J_1J_2 = -J_2J_1 = J_3$, $g(J_iX, J_iY) = g(X,$ $(Y), i=1, 2, 3.$ Unauthenticated

Download Date | 11/3/16 10:40 AM

For any Riemannian metric \tilde{g} such a metric q can be defined by the formula

 $g(X, Y) = \frac{1}{4}(\tilde{g}(X, Y) + \tilde{g}(J_1X, J_1Y) + \tilde{g}(J_2X, J_2Y) + \tilde{g}(J_3X, J_3Y)), X, Y \in \chi(M).$

If ∇ is the Riemannian connection of the metric g, then the canonical connection $\overline{\nabla}$ in the sense of [2] of the ahHs has the following form

$$
\overline{\nabla}_X Y = \frac{1}{4} (\nabla_X Y - J_1 \nabla_X J_1 Y - J_2 \nabla_X J_2 Y - J_3 \nabla_X J_3 Y), X, Y \in \chi(M). \tag{4}
$$

In particular, $\nabla g= 0$, $\nabla J_i= 0$, $i= 1, 2, 3$.

Proposition 1.1. Let (M, J_1, g) be a Kaehlerian manifold i.e. $\nabla J_1 = 0$ on M. Then the connection given by (4) coincides with those defined by (1) for (M, J_2, g) and (M, J_3, g) g). In particular, the second fundamental tensor fields of (M, J_2, g) and (M, J_3, g) are the same.

Proof.

In particular,
$$
\nabla g = 0
$$
, $\nabla J_i = 0$, $i = 1, 2, 3$.
\n**Proposition 1.1.** Let (M, J_1, g) be a Kaehlerian manifold i.e. $\nabla J_1 = 0$ on M. Then the
\nconnection given by (4) coincides with those defined by (1) for (M, J_2, g) and (M, J_3, g) . In particular, the second fundamental tensor fields of (M, J_2, g) and (M, J_3, g) are
\nthe same.
\n**Proof.**
\n
$$
\nabla_X Y = \frac{1}{4}(\nabla_X Y - J_1^2 \nabla_X Y - J_2 \nabla_X J_2 Y - J_1 J_2 \nabla_X J_3 Y) =
$$
\n
$$
= \frac{1}{4}(2\nabla_X Y - J_2 \nabla_X J_2 Y) =
$$
\n
$$
= \frac{1}{2}(\nabla_X Y - J_2 \nabla_X J_3 Y).
$$
\n
$$
= \frac{1}{2}(\nabla_X Y - J_3 \nabla_X J_3 Y).
$$
\nTo illustrate the situation described in proposition 1.1 we consider the following example.
\n**Example 1.2.** Let (M, J, g) be an almost Hermitian manifold and let (J, g) belong
\nto one of the classes in Table 1, dim $M = 4n$. Further, define orthonormal vector fields
\n $X_1, ..., X_{2n}, JX_1, ..., JX_{2n}$ on some open neighborhood U of a point $p \in M$. Assuming
\n $J_1 = J$ on U , we get an almost Hermitian manifold (U, J_1, g) which also belongs to the
\ncorresponding class. Then, we can define J_2 by the following equalities
\n
$$
J_2 X_{n+1} = -X_1, J_2 X_{n+2} = X_{n+2}, ..., J_2 X_{2n} = -X_n;
$$
\n
$$
J_2 X_{n+1} = -X_1, J_2 X_{n+2} = -X_2, ..., J_2 X_{2n} = -X_n;
$$

To illustrate the situation described in *proposition* 1.1 we consider the following example.

Example 1.2. Let (M, J, g) be an almost Hermitian manifold and let (J, g) belong to one of the classes in Table 1, $\dim M = 4n$. Further, define orthonormal vector fields $X_1, ..., X_{2n}, JX_1, ..., JX_{2n}$ on some open neighborhood U of a point $p \in M$. Assuming $J_1 = J$ on U, we get an almost Hermitian manifold (U, J_1, g) which also belongs to the corresponding class. Then, we can define J_2 by the following equalities

$$
J_2X_1 = X_{n+1}, J_2X_2 = X_{n+2}, \dots, J_2X_n = X_{2n};
$$

\n
$$
J_2X_{n+1} = -X_1, J_2X_{n+2} = -X_2, \dots, J_2X_{2n} = -X_n;
$$

\n
$$
J_2(J_1X_1) = -J_1X_{n+1}, J_2(J_1X_2) = -J_1X_{n+2}, \dots, J_2(J_1X_n) = -J_1X_{2n};
$$

\n
$$
J_2(J_1X_{n+1}) = J_1X_1, J_2(J_1X_{n+2}) = J_1X_2, \dots, J_2(J_1X_{2n}) = J_1X_n.
$$

It is clear that $J_1J_2 = -J_2J_1$, $J_1^2 = J_2^2 = -I$ and $g(J_iX, J_iY) = g(X, Y)$, $i = 1, 2, 3$ on U, where $J_3 = J_1 J_2$, $X, Y \in \chi(U)$.

If (M, J, g) is a Kaehlerian manifold (class **K**) and dim $M = 4n$ then we obtain the situation given in *proposition* 1.1 on the almost hyperHermitian manifold (U, J_1, J_2, J_3, g) . Unauthenticated

 \Box

One can find examples of the structures from Table 1 in [2], [3].

To get an almost Hermitian manifold of dimension 4n we can take a Riemannian product $M \times M$.

Problem 1.3. Let $(\mathbf{U}_{\alpha}, \mathbf{U}_{\beta})$ be any pair of the classes from Table 1 $(\alpha, \beta = 0, ..., 15)$. Can one construct such examples of ahHs (J_1, J_2, J_3, g) on manifolds such that (J_1, g) belongs to the class U_{α} and (J_2, g) belongs to the class U_{β} ? The cases (K, K) and (U, U) are easily illustrated.

 $3⁰$ **Definition 1.4.** [5] A connected Riemannian manifold (M, g) with a family of local isometries $\{s_x: x \in M\}$ is called a locally k-symmetric Riemannian space $(k-s)$. l. R. s.) if the following axioms are fulfilled: belongs to the class U_a and (J_2, g) belongs to the class U_a ? The cases (K, K) and
 (U, U) are easily illustrated.
 S² **L Definition 1.4.** [5] *A connected Riemannian manifold* (M, g) with a family
 b[*bcal* i

(a) $s_x(x) = x$ and x is the isolated fixed point of the local symmetry s_x ;

(b) the tensor field S: $S_x = (s_x)_{*x}$ is smooth and invariant under any local isometry s_x ;

(c) $S^k = I$ and k is the least of such positive integers.

If M is a k-s. l. R. s. then the unique canonical connection ∇ can be defined by the following formula (see [2])

$$
\widetilde{\nabla}_X Y = \nabla_X Y - \frac{1}{k} \sum_{j=1}^{k-1} \nabla_X (S^j) S^{k-j} Y = \frac{1}{k} \sum_{j=0}^{k-1} S^j \nabla_X S^{k-j} Y, X, Y \in \chi(M). \tag{5}
$$

Further, we have $\tilde{\nabla}g = \tilde{\nabla}\tilde{R} = \tilde{\nabla}h = \tilde{\nabla}S = 0$, $S(\tilde{R}) = \tilde{R}$, $S(h) = h$, $S(g) = g$, where $h = \nabla - \widetilde{\nabla}$ and \widetilde{R} is the curvature tensor field of $\widetilde{\nabla}$.

Let M be such a k-s. l. R. s. that $S_x = (s_x)_*$ has only complex eigenvalues $a_1 \pm b_1 i$, $..., a_r \pm b_r i$. We define distributions D_i , $i = 1, ..., r$ by

$$
D_i = \ker(S^2 - 2a_iS + I).
$$

Every $X \in \chi(M)$ has the unique decomposition $X = X_1 + ... + X_r$, where $X_i \in D_i$, $i=1, ..., r$. An almost complex structure J on M is defined by

$$
JX = \sum_{i=1}^{r} \frac{1}{b_i} (S - a_i I) X_i.
$$
 (6)

It is proved in [2] that (J, g) is an almost Hermitian structure and the connections $\overline{\nabla}$ and $\tilde{\nabla}$ defined by (1) and (5) respectively coincide i.e. $\tilde{\nabla} = \bar{\nabla}$ on M.

Proposition 1.5. Let (J_1, J_2, J_3, g) be such an ahHs on a k-s. l. R. s. (M, g) that $J_1= J$, where J is defined by (6). In this case J_2 and J_3 are not invariant with respect to the family $\{s_x: x \in M\}.$

Proof. Otherwise we have $(s_x)_{*x} \cdot J_2X = J_2 \cdot (s_x)_{*x}X$ i.e. $S \cdot J_2X = J_2 \cdot SX$. Using (6) we get

$$
J_2 J_1 X = \sum_{i=1}^r \frac{1}{b_i} (J_2 S - a_i J_2 X_i) = \sum_{\substack{i=1 \text{ polynomial} \\ \text{Dowhload Date | 11/3/16 10:40 AM}}}^{r} \frac{1}{b_i} (S - a_i I) J_2 X_i,
$$

$$
J_1 J_2 X = \sum_{i=1}^r \frac{1}{b_i} (S - a_i I)(J_2 X)_i,
$$

$$
(S^2 - 2a_i S + I) J_2 X_i = J_2 (S^2 - 2a_i S + I) X_i = 0,
$$

therefore $J_2X_i=(J_2X)_i$ and $J_1J_2X=J_2J_1X$ for any $X \in \chi(M)$. But we have $J_1J_2X = -J_2J_1X$, hence $J_3X = J_1J_2X = 0$ i.e. $J_3 = 0$.

We obtained the contradiction because J_3 is nonsingular. By similar arguments J_3 can not be invariant with respect to the family $\{s_x: x \in M\}$.

2 HyperHermitian structures on tangent bundles

 $\mathbf{0}^0$ Let (M, q) be a Riemannian manifold and TM be its tangent bundle. For a metric connection $\tilde{\nabla} (\tilde{\nabla} g = 0)$ we consider the connection map \tilde{K} of $\tilde{\nabla} [1], [4]$, defined by the formula

$$
\widetilde{\nabla}_X Z = \widetilde{K} Z_* X,\tag{7}
$$

where Z is considered as a map from M into TM and the right side means a vector field on M assigning to $p \in M$ the vector $\tilde{K} Z_* X_p \in M_{p^*}$

If $U \in TM$, we denote by H_U the kernel of $\tilde{K}_{|TM_U}$ and this *n*-dimensional subspace of TM_U is called the horizontal subspace of TM_U .

Let π denote the natural projection of TM onto M, then π_* is a C^{∞} -map of TTM onto TM. If $U \in TM$, we denote by V_U the kernel of $\pi_{\ast|TM_U}$ and this *n*-dimensional subspace of TM_U is called the vertical subspace of TM_U (dim $TM_U=2dim M=2n$). The following maps are isomorphisms of corresponding vector spaces $(p = \pi (U))$ *Ne* obtained the contradiction because J_2 is nonsingular. By similar arguments J_3
can not be invariant with respect to the family $\{s_x: x \in M\}$.
2 HyperHermitian structures on tangent bundles
 $\mathbf{0}^{\mu}$. Let

$$
\pi_{*|TM_U}: H_U \to M_p, \quad \tilde{K}_{|TM_U}: V_U \to M_p
$$

and we have

$$
TM_U=H_U\oplus V_U.
$$

If $X \in \chi(M)$, then there exists exactly one vector field on TM called the "horizontal lift" (resp. "vertical lift") of X and denoted by \bar{X}^h (\bar{X}^v) , such that for all $U \in TM$:

$$
\pi_* \bar{X}_U^h = X_{\pi(U)}, \quad \tilde{K} \bar{X}_U^h = 0_{\pi(U)}, \tag{8}
$$

$$
\pi_* \bar{X}_U^v = 0_{\pi(U)}, \quad \tilde{K} \bar{X}_U^v = X_{\pi(U)}.
$$
\n(9)

Let \tilde{R} be the curvature tensor field of $\tilde{\nabla}$, then following [1] we write

$$
[\bar{X}^v, \bar{Y}^v] = 0,\t\t(10)
$$

$$
[\bar{X}^h, \bar{Y}^v] = \left(\tilde{\nabla}_X \tilde{Y}\right)^v,\tag{11}
$$

$$
\pi_*([\bar{X}^h, \bar{Y}^h]_U) = [X, Y],
$$
\n(12)

$$
\tilde{K}([\bar{X}^h, \bar{Y}^h]_U) = \tilde{R}(X, Y)U.
$$
Unauthenticated
Download Date | 11/3/16 10:40 AM (13)

For vector fields $\bar{X} = \bar{X}^h \oplus \bar{X}^v$ and $\bar{Y} = \bar{Y}^h \oplus \bar{Y}^v$ on TM the natural Riemannian metric \langle , \rangle is defined on TM by the formula

$$
\langle \bar{X}, \bar{Y} \rangle = g(\pi_* \bar{X}, \pi_* \bar{Y}) + g(\tilde{K}\bar{X}, \tilde{K}\bar{Y}). \tag{14}
$$

It is clear that the subspaces H_U and V_U are orthogonal with respect to \lt , \gt .

It is easy to verify that $\bar{X}_1^h, \bar{X}_2^h, \ldots, \bar{X}_n^h, \bar{X}_1^v, \bar{X}_2^v, \ldots, \bar{X}_n^v$ are orthonormal vector fields on TM if X_1, X_2, \ldots, X_n are those on M i.e. $g(X_i, X_j) = \delta_j^i$.

 $1⁰$ We define a tensor field J_1 on TM by the equalities

$$
J_1 \bar{X}^h = \bar{X}^v, J_1 \bar{X}^v = -\bar{X}^h, X \in \chi(M).
$$
 (15)

For $X \in \chi(M)$ we get

$$
J_1^2 \bar{X} = J_1(J_1(\bar{X}^h \oplus \bar{X}^v)) = J_1(-\bar{X}^h \oplus \bar{X}^v) = -(\bar{X}^h \oplus \bar{X}^v) = -I\bar{X}
$$

and

$$
J_1^2 = -I.
$$

For X, $Y \in \chi(M)$ we obtain

It is easy to verify that
$$
A_1, A_2, ..., A_n, A_1, A_2, ..., A_n
$$
 are orthonormal vector heads
on *TM* if $X_1, X_2, ..., X_n$ are those on *M* i.e. $g(X_i, X_j) = \delta_j^i$.

10. We define a tensor field J_1 on *TM* by the equalities

$$
J_1 \bar{X}^h = \bar{X}^v, J_1 \bar{X}^v = -\bar{X}^h, X \in \chi(M).
$$

For $X \in \chi(M)$ we get

$$
J_1^2 \bar{X} = J_1(J_1(\bar{X}^h \oplus \bar{X}^v)) = J_1(-\bar{X}^h \oplus \bar{X}^v) = -(\bar{X}^h \oplus \bar{X}^v) = -I\bar{X}
$$

and

$$
J_1^2 = -I.
$$

For $X, Y \in \chi(M)$ we obtain

$$
< J_1 \bar{X}, J_1 \bar{Y} > = < -\bar{X}^h \oplus \bar{X}^v, -\bar{Y}^h \oplus \bar{Y}^v > = < \bar{X}^h, -\bar{Y}^h > + < \bar{X}^v, \bar{Y}^v >
$$

$$
< \bar{X}, \bar{Y} > = < \bar{X}^h \oplus \bar{X}^v, \bar{Y}^h \oplus \bar{Y}^v > = < \bar{X}^h, \bar{Y}^h > + < \bar{X}^v, \bar{Y}^v >
$$

and it follows that $< J_1 \bar{X}, J_1 \bar{Y} > = < \bar{X}, \bar{Y} >$, $(TM, J_1, < , >)$ is an almost Hermitian
manifold.
Further, we want to analyze the second fundamental tensor field h^1 of the pair $(J_1, < , >)$.
The Riemannian connection $\hat{\nabla}$ of the metric $< , >$ on *TM* is defined by the formula
(see [4])

$$
< \hat{\nabla}_{\bar{X}} \bar{Y}, Z > = \frac{1}{2} (\bar{X} < \bar{Y}, \bar{Z} > +\bar{Y} < \bar{Z}, \bar{X} > -\bar{Z
$$

and it follows that $\langle J_1\overline{X}, J_1\overline{Y}\rangle = \langle \overline{X}, \overline{Y}\rangle$, $(TM, J_1, \langle , \rangle)$ is an almost Hermitian manifold.

Further, we want to analyze the second fundamental tensor field h^1 of the pair (J_1, \leq) $, >$).

The Riemannian connection $\hat{\nabla}$ of the metric \langle , \rangle on TM is defined by the formula (see [4])

$$
\langle \hat{\nabla}_{\bar{X}} \bar{Y}, \bar{Z} \rangle = \frac{1}{2} (\bar{X} < \bar{Y}, \bar{Z} > + \bar{Y} < \bar{Z}, \bar{X} > -\bar{Z} < \bar{X}, \bar{Y} > + < \bar{Z}, [\bar{X}, \bar{Y}] > + \\ + < \bar{Y}, [\bar{Z}, \bar{X}] > + < \bar{X}, [\bar{Z}, \bar{Y}] >), \ X, Y, Z \in \chi(M). \tag{16}
$$

Using (2), (3) for orthonormal vector fields \bar{X} , \bar{Y} , \bar{Z} on TM we obtain

$$
h_{\bar{X}\bar{Y}\bar{Z}}^{1} = \langle h_{\bar{X}}^{1} \bar{Y}, \bar{Z} \rangle = \frac{1}{2} \langle \hat{\nabla}_{\bar{X}} \bar{Y} + J_{1} \hat{\nabla}_{\bar{X}} J_{1} \bar{Y}, \bar{Z} \rangle =
$$

\n
$$
= \frac{1}{2} (\langle \hat{\nabla}_{\bar{X}} \bar{Y}, \bar{Z} \rangle - \langle \hat{\nabla}_{\bar{X}} J_{1} \bar{Y}, J_{1} \bar{Z} \rangle) =
$$

\n
$$
= \frac{1}{4} (\langle [\bar{X}, \bar{Y}], \bar{Z} \rangle + \langle [\bar{Z}, \bar{X}], \bar{Y} \rangle + \langle [\bar{Z}, \bar{Y}], \bar{X} \rangle -
$$

\n
$$
- \langle [\bar{X}, J_{1} \bar{Y}], J_{1} \bar{Z} \rangle - \langle [J_{1} \bar{Z}, \bar{X}], J_{1} \bar{Y} \rangle - \langle [J_{1} \bar{Z}, J_{1} \bar{Y}], \bar{X} \rangle). (17)
$$

Using (10) – (13) and (17) we consider the following cases for the tensor field $h¹$ assuming all the vector fields to be orthonormal. Unauthenticated

Download Date | 11/3/16 10:40 AM

Библиотека БГУИР

For $X, Y \in \chi(M)$ we get

$$
\langle J_2\bar{X}, J_2\bar{Y}\rangle = \langle (\overline{JX})^h \oplus -(\overline{JX})^v, (\overline{JY})^h \oplus -(\overline{JY})^v \rangle = \langle (\overline{JX})^h, (\overline{JY})^h \rangle + \langle (\overline{JX})^v, (\overline{JY})^v \rangle = g(JX, JY) + g(JX, JY) =
$$

= $g(X, Y) + g(X, Y) = \langle \overline{X}^h, \overline{Y}^h \rangle + \langle \overline{X}^v, \overline{Y}^v \rangle$
= $\langle \overline{X}^h \oplus \overline{X}^v, \overline{Y}^h \oplus \overline{Y}^v \rangle = \langle \overline{X}, \overline{Y} \rangle.$

Further, we obtain

$$
J_1(J_2\bar{X}) = J_1(\left(\overline{JX}\right)^h \oplus -\left(\overline{JX}\right)^v) = \left(\overline{JX}\right)^h \oplus \left(\overline{JX}\right)^v,
$$

$$
J_2(J_1\bar{X}) = J_2(-\bar{X}^h \oplus \bar{X}^v) = -\left(\overline{JX}\right)^h \oplus -\left(\overline{JX}\right)^v.
$$

Thus, we get $J_1J_2 = -J_2J_1 = J_3$ and ahHs $(J_1, J_2, J_3, \langle , \rangle)$ on TM has been constructed.

Using (2), (3) for orthonormal vector fields \bar{X} , \bar{Y} , \bar{Z} on TM we obtain

$$
h_{\bar{X}\bar{Y}\bar{Z}}^2 = \langle h_{\bar{X}}^2 \bar{Y}, \bar{Z} \rangle = \frac{1}{2} \langle \hat{\nabla}_{\bar{X}} \bar{Y} + J_2 \hat{\nabla}_{\bar{X}} J_2 \bar{Y}, \bar{Z} \rangle =
$$

\n
$$
= \frac{1}{2} (\langle \hat{\nabla}_{\bar{X}} \bar{Y}, \bar{Z} \rangle - \langle \hat{\nabla}_{\bar{X}} J_2 \bar{Y}, J_2 \bar{Z} \rangle) =
$$

\n
$$
= \frac{1}{4} (\langle [\bar{X}, \bar{Y}], \bar{Z} \rangle + \langle [\bar{Z}, \bar{X}], \bar{Y} \rangle + \langle [\bar{Z}, \bar{Y}], \bar{X} \rangle -
$$

\n
$$
- \langle [\bar{X}, J_2 \bar{Y}], J_2 \bar{Z} \rangle - \langle [J_2 \bar{Z}, \bar{X}], J_2 \bar{Y} \rangle - \langle [J_2 \bar{Z}, J_2 \bar{Y}], \bar{X} \rangle).
$$
 (19)

Using (10) – (13) and (19) we consider the following cases for the tensor field $h²$ assuming all the vector fields to be orthonormal.

Further, we obtain
\n
$$
J_1(J_2\bar{X}) = J_1((\overline{JX})^h \oplus -(\overline{JX})^v) = (\overline{JX})^h \oplus (\overline{JX})^v,
$$
\n
$$
J_2(J_1\bar{X}) = J_2(-\bar{X}^h \oplus \bar{X}^v) = -(\overline{JX})^h \oplus -(\overline{JX})^v.
$$
\nThus, we get $J_1J_2 = -J_2J_1 = J_3$ and ahHs $(J_1, J_2, J_3, \leq, \geq)$ on $\overline{I}M$ has been constructed.
\nUsing (2), (3) for orthonormal vector fields \bar{X} , \bar{Y} , \bar{Z} on $\overline{I}M$ we obtain
\n
$$
h_{\overline{X}\overline{Y}\overline{Z}}^2 = \langle h_{\overline{X}}^2 \bar{Y}, \bar{Z} \rangle = \frac{1}{2} \langle \hat{\nabla}_{\overline{X}} \bar{Y} + J_2 \hat{\nabla}_{\overline{X}} J_2 \bar{Y}, \bar{Z} \rangle =
$$
\n
$$
= \frac{1}{2} (\langle \hat{\nabla}_{\overline{X}} \bar{Y}, \bar{Z} \rangle - \langle \hat{\nabla}_{\overline{X}} J_2 \bar{Y}, J_2 \bar{Z} \rangle) =
$$
\n
$$
= \frac{1}{4} (\langle \bar{X}, \bar{Y} \rangle, \bar{Z} \rangle - \langle \bar{X}, \bar{J}_1 \bar{Y} \rangle + \langle \bar{Z}, \bar{X} \rangle, \bar{Y} \rangle - \langle [J_2\bar{Z}, J_2\bar{Y}], \bar{X} \rangle).
$$
\n(19) Using (10) (13) and (19) we consider the following cases for the tensor field h^2 assuming all the vector fields to be orthonormal.
\n
$$
h_{\overline{X}^h \overline{Y}^h \overline{Z}^h} = \frac{1}{4} (\langle [\bar{X}^h, \bar{Y}^h], \bar{Z}^h \rangle + \langle [\bar{Z}^h, \bar{X}^h], \bar{Y}^h \rangle + \langle [\bar{Z}^h, \bar{Y}^h], \bar{X}^h \rangle - \
$$

$$
= -\frac{1}{4}(g(\tilde{R}(X,Y)Z,U) + g(\tilde{R}(X,JY)JZ,U)).
$$
\n(2.2⁰)

By similar arguments we obtain

$$
h_{\bar{X}^h\bar{Y}^v\bar{Z}^h}^2 = \frac{1}{4}(g(\tilde{R}(X,Z)Y,U) + g(\tilde{R}(X,JZ)JY,U))_{\text{Unauthenlicated}} \tag{3.2^0}
$$

Download Date | 11/3/16 10:40 AM

$$
h_{\bar{X}^v \bar{Y}^h \bar{Z}^h}^2 = -\frac{1}{4} (g(\tilde{R}(Z, Y)X, U) - g(\tilde{R}(JZ, JY)X, U)).
$$
\n(4.2⁰)

$$
h_{\bar{X}^v \bar{Y}^v \bar{Z}^v}^2 = 0. \tag{5.2}
$$

$$
h_{\bar{X}^v \bar{Y}^v \bar{Z}^h}^2 = 0. \tag{6.2^0}
$$

$$
h_{\bar{X}^v \bar{Y}^h \bar{Z}^v}^2 = 0. \tag{7.2^0}
$$

$$
h_{\bar{X}^h \bar{Y}^v \bar{Z}^v}^2 = \frac{1}{2} (g(\widetilde{\nabla}_X Y, Z) - g(\widetilde{\nabla}_X JY, JZ)).
$$
\n(8.2⁰)

It is clear that the construction of the ahHs on TM strongly depends on the connection ∇ and we can obtain in this way an infinite dimensional set of ahHs.

Theorem 2.1. Let (M, g, J) be an almost Hermitian manifold. Then there exists an infinite family of ahHs on TM (in particular, such structures can be constructed by the method above). *b*<sub>*Ka-p-g-* = $\frac{1}{2}g(\tilde{\nabla}_XY,Z)-g(\tilde{\nabla}_XYJZ))$. (8.2°)

It is clear that the construction of the ahHs on *TM* strongly depends on the connection
 $\tilde{\nabla}$ and we can obtain in this way an infinite dimensional set of</sub>

Corollary 2.2. Let (M, g) be a Riemannian manifold. Then there exists an infinite set of ahHs on TTM.

References

- [1] P. Dombrowski: "On the Geometry of the Tangent Bundle", J. Reine und Angew. Math., Vol. 210, (1962), pp. 73–88.
- [2] A.A. Ermolitski: Riemannian manifolds with geometric structures, BSPU, Minsk, 1998 (in Russian).
- [3] A. Gray and L.M. Herwella: "The sixteen classes of almost Hermitian manifolds and their linear invariants", Ann. Mat. pura appl., Vol. 123, (1980), pp. 35–58.
- [4] D. Gromoll, W. Klingenberg and W. Meyer: Riemannsche geometrie im großen, Springer, Berlin, 1968 (in German).
- [5] O. Kowalski: Generalized symmetric space, Lecture Notes in Math, Vol. 805, Springer-Verlag, 1980.
- [6] F. Tricerri: "Sulle varieta dotate di due strutture quusi complesse linearmente indipendenti", Riv. Mat. Univ. Parma, Vol. 3, (1974), pp. 349–358 (in Italian).
- [7] F. Tricerri: "Conessioni lineari e metriche Hermitiene sopra varieta dotate di due strutture quasi complesse", Riv. Mat. Univ. Parma, Vol. 4, (1975) , pp. 177–186 (in Italian).