Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/10307
Title: Convex SIP Problems with Finitely Representable Compact Index Sets: Immobile Indices and the Properties of the Auxiliary NLP Problem
Authors: Kostyukova, O. I.
Tchemisova, T. V.
Keywords: публикации ученых;Semi-Infinite;optimality conditions;immobile indices;рrogramming
Issue Date: 2015
Publisher: Springer
Citation: Kostyukova, O. I. Convex SIP Problems with Finitely Representable Compact Index Sets: Immobile Indices and the Properties of the Auxiliary NLP Problem / O. I. Kostyukova, T. V. Tchemisova // Set-Valued and Variational Analysis . – 2015. - Vol. 23. - Р. 519-546.
Abstract: In the paper, we consider a problem of convex Semi-Infinite Programming with a compact index set defined by a finite number of nonlinear inequalities. While studying this problem, we apply the approach developed in our previous works and based on the notions of immobile indices, the corresponding immobility orders and the properties of a specially constructed auxiliary nonlinear problem. The main results of the paper consist in the formulation of sufficient optimality conditions for a feasible solution of the original SIP problem in terms of the optimality conditions for this solution in a specially constructed auxiliary nonlinear programming problem and in study of certain useful properties of this finite problem.
URI: https://libeldoc.bsuir.by/handle/123456789/10307
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
091012.docx15.03 kBMicrosoft Word XMLView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.