Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/10532
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErmolitski, A. A.-
dc.date.accessioned2016-11-30T12:42:01Z-
dc.date.accessioned2017-07-27T12:27:08Z-
dc.date.available2016-11-30T12:42:01Z-
dc.date.available2017-07-27T12:27:08Z-
dc.date.issued2013-
dc.identifier.citationErmolitski, A. A. New Approach to the Generalized Poincare Conjecture / A. A. Ermolitski // Applied Mathematics. - 2013. - № 4. - P. 1361 - 1365.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/10532-
dc.description.abstractUsing our proof of the Poincare conjecture in dimension three and the method of mathematical induction a short and transparent proof of the generalized Poincare conjecture (the main theorem below) has been obtained. Main Theorem. Let Mn be a n-dimensional, connected, simply connected, compact, closed, smooth manifold and there exists a smooth finite triangulation on Mn which is coordinated with the smoothness structure of Mn. If Sn is the n-dimensional sphere then the manifolds Mn and Sn are homemorphic.ru_RU
dc.language.isoenru_RU
dc.subjectпубликации ученыхru_RU
dc.subjectRiemannian Metricru_RU
dc.subjectHomotopy-Equivalenceru_RU
dc.subjectCompact Smooth Manifoldsru_RU
dc.subjectSmooth Triangulationru_RU
dc.titleNew Approach to the Generalized Poincare Conjectureru_RU
dc.typeArticleru_RU
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
New Approach.pdf400.32 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.