Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/12987
Title: Incorporation of prescriptive analytics for performance engineering and dynamic performance management of Big Data applications
Authors: Zibitsker, B.
Keywords: материалы конференций;Big Data
Issue Date: 2017
Publisher: БГУИР
Citation: Zibitsker, B. Incorporation of prescriptive analytics for performance engineering and dynamic performance management of Big Data applications / B. Zibitsker // BIG DATA and Advanced Analytics: collection of materials of the third international scientific and practical conference, Minsk, Belarus, May 3–4, 2017 / editorial board : М. Batura [et al.]. – Minsk : BSUIR, 2017. – С. 18.
Abstract: In a complex Big Data environment applications compete for resources and affect each other performance. Selection of Machine Learning Algorithms and Machine Learning Libraries and Big Data YARN's Scheduler, Queues and Containers rules can significantly affect accuracy, performance and scalability of Big Data applications.
URI: https://libeldoc.bsuir.by/handle/123456789/12987
Appears in Collections:BIG DATA and Advanced Analytics. Использование BIG DATA для оптимизации бизнеса и информационных технологий (2017)

Files in This Item:
File Description SizeFormat 
Zibitsker_Incorporation.PDF268.57 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.