Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/27734
Full metadata record
DC FieldValueLanguage
dc.contributor.authorОвсиюк, Е. М.-
dc.contributor.authorВеко, О. В.-
dc.contributor.authorВойнова, Я. А.-
dc.contributor.authorКисель, В. В.-
dc.contributor.authorРедьков, В. М.-
dc.date.accessioned2017-11-15T06:56:06Z-
dc.date.available2017-11-15T06:56:06Z-
dc.date.issued2017-
dc.identifier.citationЧастица Дирака с учетом аномального магнитного момента, описание свойств точных решений уравнения в кулоновском поле / Е. М. Овсиюк и другие // Веснік Брэсцкага ўніверсітэта. - 2017. - № 1. - С. 17 - 34. - (Серыя 4. Фізіка. Матэматыка).ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/27734-
dc.description.abstractИсследована задача о частице со спином 1/2 и аномальным магнитным моментом (дополни- тельно учтено взаимодействие Паули) во внешнем кулоновском поле. После разделения переменных задача сведена к дифференциальным уравнениям второго порядка для двух радиальных функций с одной регулярной особой точкой и двумя нерегулярными в r = 0, ∞ ранга 2. Построены локальные решения Фробениуса около точек r = 0 и r =∞. По методу Пуанкаре – Перрона показана сходимость возникающих при этом степенных рядов с 5-членными рекуррентными соотношениями; ряды сходятся соответственно внутри и вне круга радиуса 1. На границе двух областей поведение решения вполне регулярное. Вычислены относительные коэффициенты в двух парах решений системы уравнений в зависимости от знака ± при параметре аномального магнитного момента. Развит еще один способ анализа системы, основанный на полученных дифференциальных уравнениях 4-го порядка, которые имеют в качестве особых точек только точки r = 0 и r =∞ ранга 2. Построены локальные решения Фробениуса для этих уравнений около точки r = 0 , возникающие степенные ряды с 7-членными рекуррентными соотношениями для коэффициентов сходятся согласно методу Пуанкаре – Перрона во всей области изменения переменной r ∈[0, ∞) . Качественный анализ поведения эффективного обобщенного радиального импульса показывает, что финитные движения (т.е. связанные состояния) в такой системе возможны.ru_RU
dc.language.isoruru_RU
dc.publisherБрэсцкі дзяржаўны ўніверсітэт імя А.С. Пушкінаru_RU
dc.subjectпубликации ученыхru_RU
dc.subjectчастица со спином 1ru_RU
dc.subjectквадрупольный моментru_RU
dc.subjectмагнитное полеru_RU
dc.subjectформализм Даффина – Кеммераru_RU
dc.subjectразделение переменныхru_RU
dc.subjectquadrupole momentru_RU
dc.subjectmagnetic fieldru_RU
dc.titleЧастица Дирака с учетом аномального магнитного момента, описание свойств точных решений уравнения в кулоновском полеru_RU
dc.typeСтатьяru_RU
local.description.annotationThe problem of a spin 1/2 particle with anomalous magnetic moment – the Pauli interaction is taken into account – in presence of external Coulomb field is studied. After separation of the variables the task is reduced to 2-nd order differential equations for two functions, with one regular singularity and two irregular sin- gularities at r =0 ∞ of the rank 2. Local Frobenius solutions near the points r = 0 and r =∞ are constructed. By Poincarй – Perrone method, convergence of arising power series with 5-term recurrent formulas for coefficients is proved; the series converge inside and outside of the circle of the radius 1; on the boundary of two domains behavior of the solutions is quite regular. The relative coefficients for two pairs of solutions are found, depending on the sign ± at the parameter of anomalous moment either one or other pair is appropriate to describe bound states in the system. An additional method to examine the problem is developed which is based on deriver two of 4-th order differential equations – they have onto two singular points, irregular and of the rank 2 in r = 0 and r =∞. Its Frobenius solutions near the points r = 0 are constructed, and their convergence arising power series is proved in the whole r ∈[0, ∞) . Qualitative analysis shows existence of finite motions (bound states) in the system under consideration.-
Appears in Collections:Публикации в изданиях Республики Беларусь

Files in This Item:
File Description SizeFormat 
Ovsiyuk_Dirac.PDF764.89 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.