Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/28073
Full metadata record
DC FieldValueLanguage
dc.contributor.authorКосмыкова, Т. С.-
dc.date.accessioned2017-11-27T08:41:07Z-
dc.date.available2017-11-27T08:41:07Z-
dc.date.issued2017-
dc.identifier.citationКосмыкова, Т. С. Апробация результатов нелинейной регрессионной логит-модели прогнозирования риска банкротства предприятий и определение ее оптимальных пороговых значений / Т. С. Космыкова // BIG DATA and Advanced Analytics: collection of materials of the third international scientific and practical conference, Minsk, Belarus, May 3–4, 2017 / editorial board : М. Batura [et al.]. – Minsk : BSUIR, 2017. – С. 293-297.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/28073-
dc.description.abstractThis article is about the models of binary choice, that can be used to predict the risk of bankruptcy. There is some results of constructing models of binary choice in this article. This scientific material presents information about these models and their predictive ability, and also it includes the stages of model valuing. This article is focus on the critical values for the model for bankruptcy risk prediction and their determination. It is noted that the model is good for the bankruptcy risk prediction.ru_RU
dc.language.isoruru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectнелинейная регрессионная логит-модельru_RU
dc.subjectпрогнозирование рискаru_RU
dc.subjectбанкротство предприятийru_RU
dc.titleАпробация результатов нелинейной регрессионной логит-модели прогнозирования риска банкротства предприятий и определение ее оптимальных пороговых значенийru_RU
dc.typeСтатьяru_RU
Appears in Collections:BIG DATA and Advanced Analytics. Использование BIG DATA для оптимизации бизнеса и информационных технологий (2017)

Files in This Item:
File Description SizeFormat 
Kosmykova_Aprobatsiya.PDF711.18 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.