Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/28093
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlzakki, H. M.-
dc.contributor.authorTsviatkou, V. Y.-
dc.date.accessioned2017-11-27T13:28:52Z-
dc.date.available2017-11-27T13:28:52Z-
dc.date.issued2017-
dc.identifier.citationAlzakki, H. M. Selection texture regions on the image based on classification assessment density of contour elements / H. M. Alzakki, V. Tsviatkou // BIG DATA and Advanced Analytics: collection of materials of the third international scientific and practical conference, Minsk, Belarus, May 3–4, 2017 / editorial board : М. Batura [et al.]. – Minsk : BSUIR, 2017. – С. 113-118.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/28093-
dc.description.abstractA method for texture images segmentation based on selection texture regions on the image based on classification assessment density of contour elements. The goal of the method find the contouring of the image, determin- ing the position of contour elements in the image and classify it for different types(points, lines, and shapes) close the region which had same type of contour type into binary regions objects. The result will be representing in binary matrix.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectselection texture regionsru_RU
dc.subjectcontour elementsru_RU
dc.subjectclassification assessment densityru_RU
dc.titleSelection texture regions on the image based on classification assessment density of contour elementsru_RU
dc.typeСтатьяru_RU
Appears in Collections:BIG DATA and Advanced Analytics. Использование BIG DATA для оптимизации бизнеса и информационных технологий (2017)

Files in This Item:
File Description SizeFormat 
Alzakki_Selection.PDF844.23 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.