DC Field | Value | Language |
dc.contributor.author | Lukashevich, M. | - |
dc.date.accessioned | 2018-03-06T13:40:53Z | - |
dc.date.available | 2018-03-06T13:40:53Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Lukashevich, M. Traffic sign detection and problems in the field of computer vision / M. Lukashevich // Открытые семантические технологии проектирования интеллектуальных систем = Open Semantic Technologies for Intelligent Systems (OSTIS-2018) : материалы международной научно-технической конференции (Минск, 15 - 17 февраля 2018 года) / редкол. : В. В. Голенков (отв. ред.) [и др.]. – Минск : БГУИР, 2018. – С. 235 - 238. | ru_RU |
dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/30378 | - |
dc.description.abstract | Object detection is a typical task of computer vision.
This paper presents some results of implementation of the traffic
sign recognition. We use R-CNN for traffic sign detection system.
We focus on speed limit superclasses of traffic sign. R-CNN deep
learning detector is a simple and suitable model for the traffic sign
recognition. This approach combines multiple low-level image
features with high-level context from object detectors and scene
classifiers. Despite the existing advances in computer vision, the
article considers the problems that exist and which need to be
solved in the future in the field of computer vision system design. | ru_RU |
dc.language.iso | en | ru_RU |
dc.publisher | БГУИР | ru_RU |
dc.subject | материалы конференций | ru_RU |
dc.subject | object detection | ru_RU |
dc.subject | deep learning | ru_RU |
dc.subject | R-CNN | ru_RU |
dc.subject | intelligent system | ru_RU |
dc.subject | computer vision | ru_RU |
dc.title | Traffic sign detection and problems in the field of computer vision | ru_RU |
dc.type | Статья | ru_RU |
Appears in Collections: | OSTIS-2018
|