Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/30378
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLukashevich, M.-
dc.date.accessioned2018-03-06T13:40:53Z-
dc.date.available2018-03-06T13:40:53Z-
dc.date.issued2018-
dc.identifier.citationLukashevich, M. Traffic sign detection and problems in the field of computer vision / M. Lukashevich // Открытые семантические технологии проектирования интеллектуальных систем = Open Semantic Technologies for Intelligent Systems (OSTIS-2018) : материалы международной научно-технической конференции (Минск, 15 - 17 февраля 2018 года) / редкол. : В. В. Голенков (отв. ред.) [и др.]. – Минск : БГУИР, 2018. – С. 235 - 238.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/30378-
dc.description.abstractObject detection is a typical task of computer vision. This paper presents some results of implementation of the traffic sign recognition. We use R-CNN for traffic sign detection system. We focus on speed limit superclasses of traffic sign. R-CNN deep learning detector is a simple and suitable model for the traffic sign recognition. This approach combines multiple low-level image features with high-level context from object detectors and scene classifiers. Despite the existing advances in computer vision, the article considers the problems that exist and which need to be solved in the future in the field of computer vision system design.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectobject detectionru_RU
dc.subjectdeep learningru_RU
dc.subjectR-CNNru_RU
dc.subjectintelligent systemru_RU
dc.subjectcomputer visionru_RU
dc.titleTraffic sign detection and problems in the field of computer visionru_RU
dc.typeСтатьяru_RU
Appears in Collections:OSTIS-2018

Files in This Item:
File Description SizeFormat 
Lukashevich_Traffic.PDF144.44 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.