Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/30401
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVashkevich, R.-
dc.contributor.authorAzarov, E. S.-
dc.date.accessioned2018-03-12T12:23:04Z-
dc.date.available2018-03-12T12:23:04Z-
dc.date.issued2018-
dc.identifier.citationVashkevich, R. Convolutional neural network with semantically meaningful activations for speech analysis / R. Vashkevich, E. S. Azarov // Открытые семантические технологии проектирования интеллектуальных систем = Open Semantic Technologies for Intelligent Systems (OSTIS-2018) : материалы международной научно-технической конференции (Минск, 15 - 17 февраля 2018 года) / редкол. : В. В. Голенков (отв. ред.) [и др.]. – Минск : БГУИР, 2018. – С. 227 – 230.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/30401-
dc.description.abstractSemantic analysis of speech is more prospective compared to analysis of text since speech contains more in- formation that is important for understanding. The most im- portant distinguishing feature of speech is intonation, which is inaccessible in the text analysis. For successful semantic analysis of speech it is necessary to transform the speech signal into features with semantic interpretation. The mathematical apparatus of convolutional neural networks (CNN) seems suitable to implement this kind of transformation. However there is a scalability problem that makes it hard to combine many CNN’s in a single solution. To overcome this we propose to develop a CNN model with semantically meaningful activations i.e. the model that is capable of semantic interpretation of its internal states. The ultimate goal of the transform is to extract all semantically meaningful information, however the present work is confined to voice activity detection (VAD) and intonation extraction. Unlike other VADs based on artificial neural networks, the proposed model does not require a lot of computing resources and has a comparable or even better performance.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectsemantic speech analysisru_RU
dc.subjectvoice activity detectionru_RU
dc.subjectconvolution neural networkru_RU
dc.subjectVADru_RU
dc.subjectCNNru_RU
dc.titleConvolutional neural network with semantically meaningful activations for speech analysisru_RU
dc.typeСтатьяru_RU
Appears in Collections:OSTIS-2018

Files in This Item:
File Description SizeFormat 
Vashkevich_Convolutional.PDF201.88 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.