Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/31371
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZibitsker, B.-
dc.contributor.authorHeger, D. A.-
dc.date.accessioned2018-05-08T07:51:21Z-
dc.date.available2018-05-08T07:51:21Z-
dc.date.issued2018-
dc.identifier.citationZibitsker, B. Factors Affecting Machine Learning Algorithms Selection / B. Zibitsker, D. A. Heger // BIG DATA Advanced Analytics: collection of materials of the fourth international scientific and practical conference, Minsk, Belarus, May 3 – 4, 2018 / editorial board: М. Batura [etc.]. – Minsk, BSUIR, 2018. – Р. 18 – 24.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/31371-
dc.description.abstractSelection of the Machine Learning (ML) algorithms and ML Libraries affect accuracy, response time, scalability and success of implementing new Big Data applications. Unfortunately, algorithms providing high accuracy not necessarily provide good response time and scale well. Different algorithms take different training time and different efforts for operationalization. In this paper we will discuss results of collaborative efforts on benchmarking ML algorithms and libraries and review the algorithm of recommender selecting the appropriate ML algorithm and ML library for new Big Data applications, depending on relative importance of accuracy, response time, scalability and other criteria.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectPerformance Assuranceru_RU
dc.subjectPerformance Engineeringru_RU
dc.subjectBenchmarkingru_RU
dc.subjectMachine Learning Algorithmsru_RU
dc.subjectMachine Learning Benchmarkru_RU
dc.subjectMachine Learning Algorithm Selectionru_RU
dc.subjectMachine Learning Library Selectionru_RU
dc.titleFactors Affecting Machine Learning Algorithms Selectionru_RU
dc.typeСтатьяru_RU
Appears in Collections:BIG DATA and Advanced Analytics. Использование BIG DATA для оптимизации бизнеса и информационных технологий (2018)

Files in This Item:
File Description SizeFormat 
Zibitsker_Factors.PDF635.82 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.