Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/33887
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAvramov, V. V.-
dc.contributor.authorHerasimovich, V.-
dc.contributor.authorPetrovsky, A. A.-
dc.date.accessioned2018-12-15T07:14:52Z-
dc.date.available2018-12-15T07:14:52Z-
dc.date.issued2018-
dc.identifier.citationAvramov, V. Sound Signal Invariant DAE Neural Network-Based Quantizer Architecture of Audio/Speech Coder Using the Matching Pursuit Algorithm / V. Avramov, V. Herasimovich, A. Petrovsky // Advances in Neural Networks – ISNN 2018. Lecture Notes in Computer Science. – 2018. – Vol. 10878. – P. 511 – 520. – DOI: 10.1007/978-3-319-92537-0_59.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/33887-
dc.description.abstractThe paper is devoted to the quantization algorithm development based on the neural networks framework. This research is considered in the context of the scalable real-time audio/speech coder based on the perceptually adaptive matching pursuit algorithm. The encoder parameterizes the input sound signal frame with some amount of real numbers that are need to be compactly represented in binary form, i.e. quantized. The neural network quantization approach gives great opportunity for such a goal because the data quantized in whole vector but not in separate form and it can effectively use correlations between each element of the input coded vector. Deep autoencoder (DAE) neural network-based architecture for the quantization part of the encoding algorithm is shown. Its structure and learning features are described. Conducted experiments points out the big compression ratio with high reconstructed signal quality of the developed audio/speech coder quantization scheme.ru_RU
dc.language.isoenru_RU
dc.publisherSpringerru_RU
dc.subjectпубликации ученыхru_RU
dc.subjectStepwise activation functionru_RU
dc.subjectAudio/speech codingru_RU
dc.subjectQuantizationru_RU
dc.subjectNeural networkru_RU
dc.titleSound Signal Invariant DAE Neural Network-Based Quantizer Architecture of Audio/Speech Coder Using the Matching Pursuit Algorithmru_RU
dc.typeСтатьяru_RU
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Avramov_Sound.pdf84.71 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.