Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/34531
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaria, A.-
dc.contributor.authorGloba, L. S.-
dc.contributor.authorMoroz, A.-
dc.date.accessioned2019-02-26T10:42:32Z-
dc.date.available2019-02-26T10:42:32Z-
dc.date.issued2019-
dc.identifier.citationBaria, A. Approach to Prediction of Mobile Operators Subscribers Churn / A. Baria, L. Globa, A. Moroz // Открытые семантические технологии проектирования интеллектуальных систем = Open Semantic Technologies for Intelligent Systems (OSTIS-2019) : материалы международной научно-технической конференции, Минск, 21 - 23 февраля 2019 г. / Белорусский государственный университет информатики и радиоэлектроники; редкол.: В. В. Голенков (гл. ред.) [и др.]. - Минск, 2019. - С. 155 - 160.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/34531-
dc.description.abstractThis article presents an approach to the description of machine learning methods for predicting the outflow of telecom operator subscribers. Describes the parameters characterizing the interaction of the mobile operator with end users. The parameters that have the greatest influence on the client’s decision to refuse the services of a mobile operator have been determined. The originality of the approach lies in the use of such mathematical methods that allow you to determine the main set of parameters, due to which specific subscribers are prone to changing the mobile operator. The proposed approach allows you to organize a system in which it is possible to determine the main parameters characterizing the tendency of customers to outflow and acting on them using various methods to try to increase subscriber loyalty. A comparative analysis of the results obtained using the analyzed logistic regression methods, Bootstrap aggregating and random forest showed that the spread of prediction errors does not exceed 6%. However, the advantage of the random forest method is the ability to determine the set of parameters that make the greatest contribution to making decisions by the subscriber to change the mobile operator. Therefore, for analyzing customer loyalty, a random forest method can be recommend, which showed on the test sample an improvement in the accuracy of the predictions in the sample to 6-7%.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjecttelecom operatorru_RU
dc.subjectchurnru_RU
dc.subjectmachine learningru_RU
dc.subjectrandom forestru_RU
dc.subjectprediction mathematical methodsru_RU
dc.titleApproach to Prediction of Mobile Operators Subscribers Churnru_RU
dc.title.alternativeПредсказание оттока абонентов от операторов мобильной связиru_RU
dc.typeСтатьяru_RU
Appears in Collections:OSTIS-2019

Files in This Item:
File Description SizeFormat 
Baria_Approach.PDF226.52 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.