Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/34741
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPaulavets, M. E.-
dc.contributor.authorPorciello, J.-
dc.contributor.authorKiryllau, Y. I.-
dc.contributor.authorEinarson, S.-
dc.date.accessioned2019-03-18T13:18:03Z-
dc.date.available2019-03-18T13:18:03Z-
dc.date.issued2019-
dc.identifier.citationA taxonomy creation for agriculture using classical machine learning algorithms / M. E. Paulavets [et al.] // BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : сборник материалов V Международной научно-практической конференции, Минск, 13–14 марта 2019 г. В 2 ч. Ч. 1 / Белорусский государственный университет информатики и радиоэлектроники; редкол. : В. А. Богуш [и др.]. – Минск, 2019. – С. 44 – 49.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/34741-
dc.description.abstractThe Ceres2030 is an evidence and cost modeling program to support donor-decision making on high-impact interventions needed to end hunger and transform the lives of the world's poorest farmers (Sustainable Development Goal 2). Policy and decision-makers are interested in finding useful techniques and approaches to address urgent problems. Our goal was to automate the process of finding interventions, a colloquially used term, in articles and to make it easier for researchers and non-researchers search for scientific achievements. We used machine learning semantic models to generate a taxonomy of agricultural interventions and outcomes relevant to policy-makers. The intervention classifier was built with the help of classical machine learning algorithms, and our first results show the possibility of making use of even small datasets for natural language processing tasks.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectmachine learningru_RU
dc.subjectnatural language processingru_RU
dc.subjectword embeddingsru_RU
dc.titleA taxonomy creation for agriculture using classical machine learning algorithmsru_RU
dc.typeArticleru_RU
Appears in Collections:BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : материалы конференции (2019)

Files in This Item:
File Description SizeFormat 
Paulavets_A_taxonomy.PDF736.35 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.