DC Field | Value | Language |
dc.contributor.author | Chepeleva, M. | - |
dc.contributor.author | Yatskou, M. | - |
dc.contributor.author | Nazarov, P. | - |
dc.date.accessioned | 2019-11-16T08:20:34Z | - |
dc.date.available | 2019-11-16T08:20:34Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Chepeleva M. The statistical stability of consensus independent component analysis for RNA-SEQ data in cancer research / Chepeleva M., Yatskou M., Nazarov P. // Информационные технологии и системы 2019 (ИТС 2019) = Information Teсhnologies and Systems 2019 (ITS 2019) : материалы международной научной конференции, Минск, 30 октября 2019 г. / Белорусский государственный университет информатики и радиоэлектроники; редкол. : Л. Ю. Шилин [и др.]. – Минск, 2019. – С. 284 – 285. | ru_RU |
dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/37310 | - |
dc.description.abstract | Independent component analysis (ICA) became a part of the standard machine learning pipeline for genomics data
analysis. The approach allows to correct technical biases and batch effects in transcriptomics datasets. Separated
signals are successfully used to characterize biological functions, their weights might be used for diagnostics
(cancer subtypes classification) and prognostics (survival prediction). Using weights of independent components as
features for downstream analysis requires high reproducibility of decomposition. Here we investigated the stability
of extracted components depending on ICA parameters and validated the optimal number of parallel consensus
ICA runs that provided reproducible deconvolution. Also, we estimated the effect of parallel runs on the quality
of lung cancer type classification (LUSC/LUAD) and gene enrichment analysis results. Finally, we estimated the
boundary values for the number of components that allows detecting biologically relevant signals in smaller patient
cohorts. | ru_RU |
dc.language.iso | ru | ru_RU |
dc.publisher | БГУИР | ru_RU |
dc.subject | материалы конференций | ru_RU |
dc.subject | independent component analysis | ru_RU |
dc.subject | significant gene signatures | ru_RU |
dc.title | The statistical stability of consensus independent component analysis for RNA-SEQ data in cancer research | ru_RU |
dc.type | Статья | ru_RU |
Appears in Collections: | ИТС 2019
|