DC Field | Value | Language |
dc.contributor.author | Vaskouski, M. | - |
dc.date.accessioned | 2020-06-11T08:12:41Z | - |
dc.date.available | 2020-06-11T08:12:41Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Vaskouski, M. Applications of second order ornstein unlenbeck stochastic processes to credit risk modeling / M. Vaskouski // BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня: сб. материалов VI Междунар. науч. - практ. конф., Минск, 20-21 мая 2020 года: в 3 ч. Ч. 1 / редкол.: В. А. Богуш [и др.]. – Минск : Бестпринт, 2020. – С. 105–111. | ru_RU |
dc.identifier.isbn | 978-985-90533-7-5 | - |
dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/39073 | - |
dc.description.abstract | We consider applications of second order stochastic processes for analysis and forecasting credit loss. In contrast to the Vasicek model based on the one-dimensional Ornstein-Uhlenbeck stochastic differential equation driven by the Wiener process, we study two-dimensional analogues of Ornstein-Uhlenbeck processes driven by fractional Brownian motions. These processes are applied to extrapolation of macroeconomic factors for modeling account loss probability. Second order Ornstein-Uhlenbeck stochastic processes capture local behavior of economic factors providing more realistic tools in comparison with the first order Ornstein-Uhlenbeck processes. The obtained results are applied to different types of account loss rate models in frame of FASB’s Current Expected Credit Loss (CECL) and IASB’s International Financial Reporting Standards 9 (IFRS 9) rules. | ru_RU |
dc.language.iso | en | ru_RU |
dc.publisher | Беспринт | ru_RU |
dc.subject | материалы конференций | ru_RU |
dc.subject | Ornstein-Uhlenbeck processes | ru_RU |
dc.subject | mean reverting | ru_RU |
dc.subject | macroeconomic factors | ru_RU |
dc.subject | rough path integration theory | ru_RU |
dc.title | Applications of second order ornstein unlenbeck stochastic processes to credit risk modeling | ru_RU |
dc.type | Статья | ru_RU |
Appears in Collections: | BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : материалы конференции (2020)
|