Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/39073
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVaskouski, M.-
dc.date.accessioned2020-06-11T08:12:41Z-
dc.date.available2020-06-11T08:12:41Z-
dc.date.issued2020-
dc.identifier.citationVaskouski, M. Applications of second order ornstein unlenbeck stochastic processes to credit risk modeling / M. Vaskouski // BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня: сб. материалов VI Междунар. науч. - практ. конф., Минск, 20-21 мая 2020 года: в 3 ч. Ч. 1 / редкол.: В. А. Богуш [и др.]. – Минск : Бестпринт, 2020. – С. 105–111.ru_RU
dc.identifier.isbn978-985-90533-7-5-
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/39073-
dc.description.abstractWe consider applications of second order stochastic processes for analysis and forecasting credit loss. In contrast to the Vasicek model based on the one-dimensional Ornstein-Uhlenbeck stochastic differential equation driven by the Wiener process, we study two-dimensional analogues of Ornstein-Uhlenbeck processes driven by fractional Brownian motions. These processes are applied to extrapolation of macroeconomic factors for modeling account loss probability. Second order Ornstein-Uhlenbeck stochastic processes capture local behavior of economic factors providing more realistic tools in comparison with the first order Ornstein-Uhlenbeck processes. The obtained results are applied to different types of account loss rate models in frame of FASB’s Current Expected Credit Loss (CECL) and IASB’s International Financial Reporting Standards 9 (IFRS 9) rules.ru_RU
dc.language.isoenru_RU
dc.publisherБеспринтru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectOrnstein-Uhlenbeck processesru_RU
dc.subjectmean revertingru_RU
dc.subjectmacroeconomic factorsru_RU
dc.subjectrough path integration theoryru_RU
dc.titleApplications of second order ornstein unlenbeck stochastic processes to credit risk modelingru_RU
dc.typeСтатьяru_RU
Appears in Collections:BIG DATA and Advanced Analytics = BIG DATA и анализ высокого уровня : материалы конференции (2020)

Files in This Item:
File Description SizeFormat 
Vaskouski_Applications.pdf742.4 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.