Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/41186
Full metadata record
DC FieldValueLanguage
dc.contributor.authorElsayed, O. S.-
dc.contributor.authorPetrov, S. N.-
dc.date.accessioned2020-11-23T07:37:10Z-
dc.date.available2020-11-23T07:37:10Z-
dc.date.issued2020-
dc.identifier.citationElsayed, O. S. Speech and voice recognition system based on machine learning methods / Elsayed O. S., Petrov S. N. // Современные средства связи : материалы XХV Междунар. науч.-техн. конф., 22–23 окт. 2020 года, Минск / Белорусская государственная академия связи ; редкол.: А. О. Зеневич [и др.]. – Минск : БГАС, 2020. – С. 222-223.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/41186-
dc.description.abstractPerson’s unique biometric identity can be used to distinguish different people and to augment and upgrade the current regular PIN and password systems for gaining access to computers, phones, or restricted access rooms and buildings. The USA banking app uses voice recognition to provide easy and secure multi-factor biometric security, the voice component adding an extra level of liveness detection to the process. The Recurrent Neural Network allows for a bi-directional flow of data which is especially useful for purpose of speech recognition. In our work, we use TensorFlow for machine learning. TensorFlow allows building neural network models to recognize spoken words. Module development includes 4 stages: create (or use a ready-made one) dataset; build NN; train the NN; test NN.ru_RU
dc.language.isoenru_RU
dc.publisherБелорусская государственная академия связиru_RU
dc.subjectпубликации ученыхru_RU
dc.subjectsoundproofingru_RU
dc.subjectreverberationru_RU
dc.subjectspeech recognitionru_RU
dc.titleSpeech and voice recognition system based on machine learning methodsru_RU
dc.typeСтатьяru_RU
Appears in Collections:Публикации в изданиях Республики Беларусь

Files in This Item:
File Description SizeFormat 
Elsayed_Speech.pdf110.25 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.