Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/41659
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAvramov, V. V.-
dc.contributor.authorRybenkov, E. V.-
dc.contributor.authorPetrovsky, N. A.-
dc.date.accessioned2020-12-14T08:06:43Z-
dc.date.available2020-12-14T08:06:43Z-
dc.date.issued2019-
dc.identifier.citationAvramov, V. V. Image enhancement by 2D non-separable quaternionic filter bank-based thresholding neural network / V. V. Avramov, E. V. Rybenkov, N. A. Petrovsky // Pattern Recognition and Information Processing : 14th International conference, Minsk, 21–23 may 2019 / Springer. – Minsk, 2019. – P. 207–212.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/41659-
dc.description.abstractThe thresholding neural network with a 2-D non-separable paraunitary filter bank based on quaternion multipliers (2-D NSQ-PUFB) for image enhancement is proposed. Due to the high characteristics of the multi-bands 2-D NSQ-PUFB (structure 64in-64out, CG2D =17,15 dB, prototype filter bank (8x24) Q-PUFB), which forms the basis of the TNN, the results of noise editing in comparison with the approaches based on the two-channel wavelet transform in terms of PSNR are 1 1.5 dB higher.ru_RU
dc.language.isoenru_RU
dc.publisherSpringerru_RU
dc.subjectпубликации ученыхru_RU
dc.subjectimage enhancementru_RU
dc.subjectthresholding neural networkru_RU
dc.titleImage enhancement by 2D non-separable quaternionic filter bank-based thresholding neural networkru_RU
dc.typeСтатьяru_RU
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Avramov_Image.pdf177.36 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.