Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/41685
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAvramov, V. V.-
dc.contributor.authorRybenkov, E. V.-
dc.contributor.authorPetrovsky, N. A.-
dc.date.accessioned2020-12-14T12:11:10Z-
dc.date.available2020-12-14T12:11:10Z-
dc.date.issued2019-
dc.identifier.citationAvramov, V. V. Thresholding Neural Network Image Enhancement Based on 2-D Non-separable Quaternionic Filter Bank / V. V. Avramov, E. V. Rybenkov, N. A. Petrovsky // Pattern Recognition and Information Processing : 14th International conference, Minsk, 21–23 may 2019 / Springer. – Minsk, 2019. – P. 147–161. – DOI: https://doi.org/10.1007/978-3-030-35430-5_13.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/41685-
dc.description.abstractThe thresholding neural network with a 2-D non-separable paraunitary filter bank based on quaternion multipliers (2-D NSQ-PUFB) for image enhancement is proposed. Due to the high characteristics of the multi-bands 2-D NSQ-PUFB (structure “64in-64out”, CG2D=17,15dB , prototype filter bank ( 8×24 ) Q-PUFB), which forms the basis of the TNN, the results of noise editing in comparison with the approaches based on the two-channel wavelet transform in terms of PSNR are 1dB – 1.5dB higher.ru_RU
dc.language.isoenru_RU
dc.publisherSpringerru_RU
dc.subjectавторефераты диссертацийru_RU
dc.subjectimage enhancementru_RU
dc.subjectthresholding neural networkru_RU
dc.titleThresholding Neural Network Image Enhancement Based on 2-D Non-separable Quaternionic Filter Bankru_RU
dc.typeСтатьяru_RU
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Avramov_Thresholding.pdf21.91 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.