Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/42273
Title: Ontological Approach to Image Captioning Evaluation
Authors: Shunkevich, D. V.
Iskra, N. A.
Keywords: публикации ученых;artificial intelligence;standardization semantic compatibility
Issue Date: 2020
Publisher: Springer
Citation: Shunkevich, D. Ontological Approach to Image Captioning Evaluation / D. Shunkevich, N. Iskra // Captioning Evaluation. Pattern Recognit. Image Anal. – 2020. – № 30. – P. 288–294. – DOI: https://doi.org/10.1134/s1054661820030256.
Abstract: The paper considers the ontology of the existing metrics widely used for image captioning task evaluation. It is shown how the ontological approach provides more natural and resilient way to image captioning quality assurance in comparison with machine translation metrics variations. Another important problem, discussed in the paper, is the information support for researchers in the field of image captioning.
URI: https://libeldoc.bsuir.by/handle/123456789/42273
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Shunkevich_Ontological.pdf41.09 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.