Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/45803
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKharin, A.-
dc.contributor.authorDai Yukun-
dc.contributor.authorTon That Tu-
dc.contributor.authorWang Yumin-
dc.date.accessioned2021-11-04T11:08:56Z-
dc.date.available2021-11-04T11:08:56Z-
dc.date.issued2021-
dc.identifier.citationRobustification of Sequential Statistical Decision Rules for Stochastic Data Flows Analysis / Kharin A. [et al.] // Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2021. – P. 146–148.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/45803-
dc.description.abstractIn data analysis the issues of statistical decision making on parameters of observed stochastic data flows are important. To solve the relevant problems, here sequential statistical decision rules are used. The sequential statistical decision rules traditionally used loose their performance optimality in situations that are common in practice, when the hypothetical model is distorted. Here the robustified sequential decision rules are constructed for three models of observation flows: independent homogeneous observations; observations forming a time series with a trend; dependent observations forming a homogeneous Markov chain.ru_RU
dc.language.isoenru_RU
dc.publisherUIIP NASBru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectconference proceedingsru_RU
dc.subjectsequential decision ruleru_RU
dc.subjecttime series with trendru_RU
dc.subjecthomogeneous Markov chainru_RU
dc.subjectdistortionru_RU
dc.subjectrobustnessru_RU
dc.titleRobustification of Sequential Statistical Decision Rules for Stochastic Data Flows Analysisru_RU
dc.typeСтатьяru_RU
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021)

Files in This Item:
File Description SizeFormat 
Kharin_Robustification.pdf917.98 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.