Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/45816
Title: Мachine learning methods for predict electrophysical properties of semiconductor materials for optoelectronic and energy storage devices
Authors: Khinevich, A.
Stsiapanau, A. A.
Smirnov, A. G.
Keywords: материалы конференций;conference proceedings;machine learning;semiconductor materials
Issue Date: 2021
Publisher: БГУИР
Citation: Khinevich, A. Мachine learning methods for predict electrophysical properties of semiconductor materials for optoelectronic and energy storage devices / A. Khinevich, A. Stsiapanau, A. Smirnov // Nano-Desing, Tehnology, Computer Simulations=Нанопроектирование, технология, компьютерное моделирование (NDTCS-2021) : тезисы докладов XIX Международного симпозиума, Минск, 28-29 октября 2021 года / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: В. А. Богуш [и др.]. – Минск, 2021. – P. 65–66.
Abstract: There were several notable attempts at utilizing Machine Learning to predict physical properties of various materials. Huang et al. reported prediction of band gap properties for ternary metal nitride compounds using ML approach based on the calculated data using Heyd–Scuseria–Ernzerhof (HSE) hybrid functionals and Perdew–Burke-Ernzerhof (PBE) DFT methods. In that study electronegativity, valence and covalent radius were used as feature for the training of the ML algorithm and prediction. In another study, high accuracy of the prediction was achieved for the ML algorithm trained on the dataset with 3 only features such as ionic radius, electronegativity and number of row associated with position of specific element in the periodic table.
URI: https://libeldoc.bsuir.by/handle/123456789/45816
Appears in Collections:NDTCS 2021

Files in This Item:
File Description SizeFormat 
Khinevich_Мachine.pdf66.6 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.