Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/45825
Title: Automation of the Study of Radiologically Isolated Syndrome in Multiple Sclerosis
Authors: Kosik, I.
Nedzved, A.
Karapetsian, R.
Yashina, V.
Gurevich, I.
Keywords: материалы конференций;conference proceedings;medical image analysis;UNet 3+;regions detection;segmentation;dataset preprocessing
Issue Date: 2021
Publisher: UIIP NASB
Citation: Automation of the Study of Radiologically Isolated Syndrome in Multiple Sclerosis / Kosik I. [et al.] // Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2021. – P. 187–190.
Abstract: In this paper the UNet 3+ model is used for detection regions of multiple sclerosis on radiological images. For increase quality the specific image preprocessing improves quality of dataset and results of detection. The proposed solution for the automatic identification of pathological areas using artificial neural networks has significantly increased the speed of analyzing the state of the pathological pattern.
URI: https://libeldoc.bsuir.by/handle/123456789/45825
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021)

Files in This Item:
File Description SizeFormat 
Kosik_Automation.pdf1.29 MBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.