Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/45833
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJun Ma-
dc.contributor.authorXunhuan Ren-
dc.contributor.authorKonopelko, V.-
dc.contributor.authorTsviatkou, V. Y.-
dc.contributor.authorКонопелько, В. К.-
dc.contributor.authorЦветков, В. Ю.-
dc.date.accessioned2021-11-05T11:37:43Z-
dc.date.available2021-11-05T11:37:43Z-
dc.date.issued2021-
dc.identifier.citationAn Automatic Pruning Method for Skeleton Images / Jun Ma [et al.] // Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2021. – P. 232–235.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/45833-
dc.description.abstractSkeletons can be regarded as a compact shape representation in that each pattern can be completely reconstructed from its skeleton. One of the limitations of the application of the skeleton for object analysis and recognition is the existence of redundant skeleton branches. Skeleton pruning is an effective way to remove the redundant skeleton branches in the skeleton images. However, most of the existing pruning methods require manual tuning of the parameter to control the power of pruning, which is not convenient to use. In this paper, we have proposed a fully automatic pruning method that adjusts the power of the pruning according to the image and achieves good pruning results in the experiment.ru_RU
dc.language.isoenru_RU
dc.publisherUIIP NASBru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectconference proceedingsru_RU
dc.subjectskeletonru_RU
dc.subjectautomatic skeleton pruningru_RU
dc.subjectskeletonizationru_RU
dc.titleAn Automatic Pruning Method for Skeleton Imagesru_RU
dc.typeСтатьяru_RU
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021)

Files in This Item:
File Description SizeFormat 
Ma_An.pdf1.02 MBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.