Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/45838
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMukha, V. S.-
dc.date.accessioned2021-11-08T06:11:37Z-
dc.date.available2021-11-08T06:11:37Z-
dc.date.issued2020-
dc.identifier.citationMukha, V. S. Bayesian multidimensional-matrix polynomial empirical regression / Mukha V. S. // Control and Cybernetics. – 2020. – Vol. 49, № 4. – P. 291–315.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/45838-
dc.description.abstractThe problem of parameter estimation for the polynomial in the input variables regression function is formulated and solved. The input and output variables of the regression function are multidimensional matrices. The parameters of the regression function are assumed to be random independent multidimensional matrices with Gaussian distribution and known mean value and variance matrices. The solution to this problem is a multidimensional-matrix system of the linear algebraic equations in multidimensional-matrix unknown – regression function parameters. We consider the particular cases of constant, affine and quadratic regression function, for which we have obtained formulas for parameter calculation. Computer simulation of the quadratic regression function is performed for the two-dimensional matrix input and output variables.ru_RU
dc.language.isoenru_RU
dc.publisherPolska Akademia Naukru_RU
dc.subjectпубликации ученыхru_RU
dc.subjectregression functionru_RU
dc.subjectparameter estimationru_RU
dc.subjectmaximum likelihood estimationru_RU
dc.subjectBayesian estimationru_RU
dc.subjectmultidimensional matricesru_RU
dc.titleBayesian multidimensional-matrix polynomial empirical regressionru_RU
dc.typeСтатьяru_RU
Appears in Collections:Публикации в зарубежных изданиях

Files in This Item:
File Description SizeFormat 
Mukha_Bayesian.pdf242.59 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.