Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/45861
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRdzhabov, A.-
dc.contributor.authorKovalev, V.-
dc.date.accessioned2021-11-08T10:57:11Z-
dc.date.available2021-11-08T10:57:11Z-
dc.date.issued2021-
dc.identifier.citationRdzhabov, A. Performance Analysis of Deep Learning Models for Heart Segmentation in Chest X-ray Images on a Small Dataset / Rdzhabov A., Kovalev V. // Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2021. – P. 228–231.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/45861-
dc.description.abstractThe widespread practice of screening of the lungs by radiography makes it possible to analyze the chest area for the presence of extrapulmonary pathologies, such as cardiac pathologies. In many cases, it is advisable to assign the process of solving the problem of analyzing and marking up images to automated algorithms. This paper discusses the performance comparison of multiple deep learning models for heart segmentation on chest x-ray images. The information obtained can be used to improve the algorithms for recognizing pathologies in chest X-ray images.ru_RU
dc.language.isoenru_RU
dc.publisherUIIP NASBru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectconference proceedingsru_RU
dc.subjectDeep Learningru_RU
dc.subjectNeural Networksru_RU
dc.subjectComputer Visionru_RU
dc.subjectAutomationru_RU
dc.subjectRadiologyru_RU
dc.subjectComputational Experimentru_RU
dc.titlePerformance Analysis of Deep Learning Models for Heart Segmentation in Chest X-ray Images on a Small Datasetru_RU
dc.typeСтатьяru_RU
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021)

Files in This Item:
File Description SizeFormat 
Rdzhabov_Performance.pdf1.21 MBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.