Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/45873
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShuldau, M.-
dc.contributor.authorYushkevich, A.-
dc.contributor.authorBosko, I.-
dc.contributor.authorTuzikov, A.-
dc.contributor.authorAndrianov, A.-
dc.date.accessioned2021-11-08T12:44:03Z-
dc.date.available2021-11-08T12:44:03Z-
dc.date.issued2021-
dc.identifier.citationDevelopment of Molecular Autoencoders as Generators of Protein Inhibitors: Application for Prediction of Potential Drugs Against Coronavirus SARS-CoV-2 / Shuldau M. [et al.] // Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus / United Institute of Informatics Problems of the National Academy of Sciences of Belarus. – Minsk, 2021. – P. 153–158.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/45873-
dc.description.abstractA generative autoencoder for the rational design of potential inhibitors of the SARS-CoV-2 main protease able to block the catalytic site of this functionally important viral enzyme was developed.ru_RU
dc.language.isoenru_RU
dc.publisherUIIP NASBru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectconference proceedingsru_RU
dc.subjectSARS-CoV-2ru_RU
dc.subjectmain proteaseru_RU
dc.subjectdeep learningru_RU
dc.subjectgenerative autoencoderru_RU
dc.subjectsemi-supervised learningru_RU
dc.subjectvirtual screeningru_RU
dc.subjectmolecular dockingru_RU
dc.titleDevelopment of Molecular Autoencoders as Generators of Protein Inhibitors: Application for Prediction of Potential Drugs Against Coronavirus SARS-CoV-2ru_RU
dc.typeСтатьяru_RU
Appears in Collections:Pattern Recognition and Information Processing (PRIP'2021) = Распознавание образов и обработка информации (2021)

Files in This Item:
File Description SizeFormat 
Shuldau_Development.pdf1.14 MBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.