Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/46942
Title: Multi-class classification SVM methods
Authors: Zhao Di
Keywords: материалы конференций;Support Vector Machine;multi-classification
Issue Date: 2022
Publisher: БГУИР
Citation: Zhao Di. Multi-class classification SVM methods / Zhao Di // Технологии передачи и обработки информации : материалы международного научно-технического семинара, Минск, март-апрель 2022 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2022. – С. 85–87.
Abstract: Support Vector Machine (SVM) was first proposed by Cortes and Vapnik in 1995. It is developed from the linear separable classification problem. The basic principle of SVM is to use a hyperplane to divide data into two categories, but in many classification problems, the sample is not linear, and the classification problem is multi-classification. We need to solve the multiclassification problem on a dichotomy basis.
URI: https://libeldoc.bsuir.by/handle/123456789/46942
Appears in Collections:Технологии передачи и обработки информации : материалы международного научно-технического семинара (2022)

Files in This Item:
File Description SizeFormat 
Di_Multi_class.pdf85.63 kBAdobe PDFView/Open
Show full item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.