Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/46943
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhao Di-
dc.date.accessioned2022-05-14T09:41:36Z-
dc.date.available2022-05-14T09:41:36Z-
dc.date.issued2022-
dc.identifier.citationZhao Di. Sensor data frequency feature extraction / Zhao Di // Технологии передачи и обработки информации : материалы международного научно-технического семинара, Минск, март-апрель 2022 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2022. – С. 66–68.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/46943-
dc.description.abstractFrequency domain features are important for human activity recognition. However, the raw signal needs to be converted to frequency domain features using a fast Fourier transform. In the frequency domain, the time series data of each component is converted by using the Fast Fourier Transform (FFT) algorithm.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectFast Fourier algorithmru_RU
dc.subjectFeature extractionru_RU
dc.titleSensor data frequency feature extractionru_RU
dc.typeСтатьяru_RU
Appears in Collections:Технологии передачи и обработки информации : материалы международного научно-технического семинара (2022)

Files in This Item:
File Description SizeFormat 
Di_Sensor.pdf68.56 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.