Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/49286
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTang, Yi-
dc.contributor.authorGourinovitch, A.-
dc.coverage.spatialМинск-
dc.date.accessioned2022-12-05T11:00:10Z-
dc.date.available2022-12-05T11:00:10Z-
dc.date.issued2022-
dc.identifier.citationTang ,Yi Small object detection method / Yi. Tang, A. Gourinovitch // Информационные технологии и системы 2022 (ИТС 2022) = Information Technologies and Systems 2022 (ITS 2022) : материалы Международной научной конференции, Минск, 23 ноября 2022 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск : БГУИР, 2022. – С. 169–170.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/49286-
dc.description.abstractIn computer vision, significant advances have been made on object detection with the rapid development of deep convolutional neural networks (CNN)/ When it comes to small objects? the accuracy of deep learning methdods is low.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectcontrovolutional neural networksru_RU
dc.subjectobject detectionru_RU
dc.subjectpattern recognitionru_RU
dc.subjectfeature pyramid networkru_RU
dc.titleSmall object detection methodru_RU
dc.typeArticleru_RU
Appears in Collections:ИТС 2022

Files in This Item:
File Description SizeFormat 
Tang Yi.pdf529.08 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.