Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/51904
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, Z. X.-
dc.contributor.authorChen, Z. Y.-
dc.coverage.spatialМинскru_RU
dc.date.accessioned2023-06-09T06:22:39Z-
dc.date.available2023-06-09T06:22:39Z-
dc.date.issued2023-
dc.identifier.citationYang, Z. X. Human physical activity recognition algorithm based on smartphone data convolutional nerual network and long short time memory / Z. X. Yang, Z. Y. Chen // Технологии передачи и обработки информации : материалы Международного научно-технического семинара, Минск, март-апрель 2023 г. / Белорусский государственный университет информатики и радиоэлектроники; редкол.: В. Ю. Цветков [и др.]. – Минск, 2023. – С. 102–107.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/51904-
dc.description.abstractA deep learning framework for activity recognition based on smartphone acceleration sensor data, convolutional neural network (CNN) and long short-term memory (LSTM) is proposed in the paper. The proposed framework aims to improve the accuracy of human activity recognition (HAR) by combining the strengths of CNN and LSTM. The CNN is used to extract features from the acceleration data and the LSTM is used to model the temporal dependencies of the data. The proposed framework is evaluated on the publicly available dataset, it includes 6 different actions: walking, walking upstairs, walking downstairs, sitting, standing, and laying. The recognition accuracy has reached 94 %.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectCNNru_RU
dc.subjectacceleration sensorru_RU
dc.subjectneural networkru_RU
dc.subjectmachine learningru_RU
dc.titleHuman physical activity recognition algorithm based on smartphone data convolutional nerual network and long short time memoryru_RU
dc.typeArticleru_RU
Appears in Collections:Технологии передачи и обработки информации : материалы Международного научно-технического семинара (2023)

Files in This Item:
File Description SizeFormat 
Yang_Human.pdf499.12 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.