Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/51927
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, J. K.-
dc.contributor.authorFu, J. X.-
dc.coverage.spatialМинскru_RU
dc.date.accessioned2023-06-12T07:14:28Z-
dc.date.available2023-06-12T07:14:28Z-
dc.date.issued2023-
dc.identifier.citationChen, J. K. Research on texture image feature extraction method / J. K. Chen, J. X. Fu // Технологии передачи и обработки информации : материалы Международного научно-технического семинара, Минск, март-апрель 2023 г. / Белорусский государственный университет информатики и радиоэлектроники; редкол.: В. Ю. Цветков [и др.]. – Минск, 2023. – С. 149–153.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/51927-
dc.description.abstractIn this paper, we give several classical feature extraction methods, including grayscale co-generation matrix, Gabor and wavelet transform features, and local binary pattern series features. We introduce the basic principles of these feature extraction algorithms and some derivative methods respectively. Finally, we analyze the advantages and disadvantages of the existing feature extraction methods: grayscale covariance matrix can analyze the arrangement rules of image texture and extract local spatial features of the image, filtering methods and local feature extraction methods are widely used, but the extracted features do not provide a good description of the image structure; and the multi-feature fusion operation brings huge computational effort. Therefore, the future developable directions are proposed based on the existing problems and difficulties in processing texture images.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjecttexture image segmentationru_RU
dc.subjectfeature extractionru_RU
dc.subjectimage processingru_RU
dc.titleResearch on texture image feature extraction methodru_RU
dc.typeArticleru_RU
Appears in Collections:Технологии передачи и обработки информации : материалы Международного научно-технического семинара (2023)

Files in This Item:
File Description SizeFormat 
Chen_Research.pdf476.85 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.