DC Field | Value | Language |
dc.contributor.author | Qiu, G. W. | - |
dc.coverage.spatial | Минск | ru_RU |
dc.date.accessioned | 2023-06-13T10:55:26Z | - |
dc.date.available | 2023-06-13T10:55:26Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Qiu, G. W. Heart rate estimation from photoplethysmogram and accleration smartphone data based on convolutional neuralnetwork and long short time memory network / G. W. Qiu // Информационная безопасность : сборник материалов 59-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 17–21 апреля 2023 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2023. – С. 165–167. | ru_RU |
dc.identifier.uri | https://libeldoc.bsuir.by/handle/123456789/51969 | - |
dc.description.abstract | The wearable reflective photocapacitance plethysmograph (PPG) sensor can be integrated into the watch or strap to provide instantaneous heart rate (HRs), causing minimal inconvenience to users. However, the existence of motion artifacts (MAs) leads to inaccurate heart rate estimation. In order to solve this problem, I propose a new deep learning neural network to ensure accurate estimation of HR in high-intensity exercise.The average absolute error of the algorithm for all training data sets and test data sets is less than 1.5 bpm, including 1.09 bpm for training data sets and 1.46 bpm for test data sets. | ru_RU |
dc.language.iso | en | ru_RU |
dc.publisher | БГУИР | ru_RU |
dc.subject | материалы конференций | ru_RU |
dc.subject | Convolution | ru_RU |
dc.subject | Concatenation | ru_RU |
dc.subject | Heart rate and motion artifacts | ru_RU |
dc.title | Heart rate estimation from photoplethysmogram and accleration smartphone data based on convolutional neuralnetwork and long short time memory network | ru_RU |
dc.type | Article | ru_RU |
Appears in Collections: | Информационная безопасность : материалы 59-й научной конференции аспирантов, магистрантов и студентов (2023)
|