Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/51971
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQiu Yuepeiyan-
dc.coverage.spatialМинскru_RU
dc.date.accessioned2023-06-13T11:09:25Z-
dc.date.available2023-06-13T11:09:25Z-
dc.date.issued2023-
dc.identifier.citationQiu Yuepeiyan. Research on Chinese sign language recognition based on skeleton features / Qiu Yuepeiyan // Информационная безопасность : сборник материалов 59-й научной конференции аспирантов, магистрантов и студентов БГУИР, Минск, 17–21 апреля 2023 г. / Белорусский государственный университет информатики и радиоэлектроники. – Минск, 2023. – С. 186–188.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/51971-
dc.description.abstractThe hearing-impaired people in China account for about 20% of the world ’s hearingimpaired people, and increase year by year. Chinese sign language is an important auxiliary tool for communication between the hearing impaired and the outside world. Finger language is a part of sign language, the number of it is not large and it is easy to learn and remember. Therefore, this thesis takes. Chinese letter sign language as the research object, studies Chinese letter sign language in different backgrounds, and researches the skeleton extraction of gesture images, the presentation and recognition of skeleton descriptors based on computer vision. The main research content of this thesis is Chinese letter sign language recognition based on skeleton features. Firstly, gestures are extracted. Secondly, on the basis of the extracted binary image of gestures, an improved gesture skeleton extraction method based on distance change is proposed to make the extracted skeletons have connectivity.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectsign language recognitionru_RU
dc.subjectskeletonru_RU
dc.subjectprobabilistic neural networkru_RU
dc.titleResearch on Chinese sign language recognition based on skeleton featuresru_RU
dc.typeArticleru_RU
Appears in Collections:Информационная безопасность : материалы 59-й научной конференции аспирантов, магистрантов и студентов (2023)

Files in This Item:
File Description SizeFormat 
Qiu_Research.pdf235.99 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.