Skip navigation
Please use this identifier to cite or link to this item: https://libeldoc.bsuir.by/handle/123456789/52377
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhao Di-
dc.contributor.authorTang Yi-
dc.coverage.spatialМинскru_RU
dc.date.accessioned2023-06-30T05:56:48Z-
dc.date.available2023-06-30T05:56:48Z-
dc.date.issued2023-
dc.identifier.citationZhao Di. The adaptive boosting algorithm in biomedical image segmentation / Zhao Di, Tang Yi // Информационные технологии и управление : материалы 59-ой научной конференции аспирантов, магистрантов и студентов, Минск, 17–21 апреля 2023 года / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск, 2023. – С. 56.ru_RU
dc.identifier.urihttps://libeldoc.bsuir.by/handle/123456789/52377-
dc.description.abstractAdaptive Boosting is a powerful machine learning algorithm that has been widely used in biomedical image segmentation due to its ability to handle high-dimensional feature spaces and improve classication accuracy. In this paper, we will introduce the principles and applications of AdaBoost and discuss its advantages and disadvantages.ru_RU
dc.language.isoenru_RU
dc.publisherБГУИРru_RU
dc.subjectматериалы конференцийru_RU
dc.subjectmachine learningru_RU
dc.subjectmagnetic resonance imagingru_RU
dc.subjectbiomedical imageru_RU
dc.titleThe adaptive boosting algorithm in biomedical image segmentationru_RU
dc.typeArticleru_RU
Appears in Collections:Информационные технологии и управление : материалы 59-й научной конференции аспирантов, магистрантов и студентов (2023)

Files in This Item:
File Description SizeFormat 
Zhao_Di_The_adaptive.pdf316.59 kBAdobe PDFView/Open
Show simple item record Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.